(2013•深圳一模)等差數(shù)列{an}中,已知a5>0,a4+a7<0,則{an}的前n項和Sn的最大值為( 。
分析:由等差數(shù)列的性質(zhì),結(jié)合a5>0,a4+a7<0,得到a6<0,則可斷定數(shù)列是遞減數(shù)列,由a5>0,可知數(shù)列的首項大于0,由此可判斷數(shù)列的前5項和最大.
解答:解:在等差數(shù)列{an}中,由a5+a6=a4+a7<0,而a5>0,得a6<0.
則等差數(shù)列的公差d=a6-a5<0,所以數(shù)列{an}是遞減數(shù)列,則a1>0.
所以{an}的前n 項和Sn的最大值為S5
故選C.
點(diǎn)評:本題考查了數(shù)列的前n項和,考查了數(shù)列的函數(shù)特性,考查了等差數(shù)列的性質(zhì),解答此題的關(guān)鍵是判出a6<0,
屬基礎(chǔ)題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•深圳一模)已知函數(shù)f(x)=ax+x2-xlna-b(a,b∈R,a>1),e是自然對數(shù)的底數(shù).
(1)試判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性;
(2)當(dāng)a=e,b=4時,求整數(shù)k的值,使得函數(shù)f(x)在區(qū)間(k,k+1)上存在零點(diǎn);
(3)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•深圳一模)(坐標(biāo)系與參數(shù)方程選做題)在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.曲線C1的參數(shù)方程為
x=
t
y=t+1.
(t為參數(shù)),曲線C2的極坐標(biāo)方程為ρsinθ-ρcosθ=3,則C1與C2交點(diǎn)在直角坐標(biāo)系中的坐標(biāo)為
(2,5)
(2,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•深圳一模)設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=log3(1+x),則f(-2)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•深圳一模)已知函數(shù)f(x)=2sin(
πx
6
+
π
3
)(0≤x≤5)
,點(diǎn)A、B分別是函數(shù)y=f(x)圖象上的最高點(diǎn)和最低點(diǎn).
(1)求點(diǎn)A、B的坐標(biāo)以及
OA
OB
的值;
(2)設(shè)點(diǎn)A、B分別在角α、β的終邊上,求tan(α-2β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•深圳一模)已知數(shù)列{an}滿足:a1=1,a2=a(a≠0),an+2=p•
an+12
an
(其中p為非零常數(shù),n∈N*).
(1)判斷數(shù)列{
an+1
an
}
是不是等比數(shù)列?
(2)求an;
(3)當(dāng)a=1時,令bn=
nan+2
an
,Sn為數(shù)列{bn}的前n項和,求Sn

查看答案和解析>>

同步練習(xí)冊答案