精英家教網 > 高中數學 > 題目詳情
設P為曲線C:y=x2+2x+3上的點,且曲線C在點P處切線傾斜角的取值范圍是[0,
π
4
]
,則點P橫坐標的取值范圍是( 。
A、[-1,-
1
2
]
B、[-1,0]
C、[0,1]
D、[
1
2
,1]
分析:根據題意知,傾斜角的取值范圍,可以得到曲線C在點P處斜率的取值范圍,進而得到點P橫坐標的取值范圍.
解答:解:設點P的橫坐標為x0,
∵y=x2+2x+3,
∴y'|x=x0=2x0+2,
利用導數的幾何意義得2x0+2=tanα(α為點P處切線的傾斜角),
又∵α∈[0,
π
4
]
,∴0≤2x0+2≤1,
x0∈[-1,-
1
2
]

故選A.
點評:本小題主要考查利用導數的幾何意義求切線斜率問題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設P為曲線C:y=x2-x+1上一點,曲線C在點P處的切線的斜率的范圍是[-1,3],則點P縱坐標的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設P為曲線C:y=
1
3
x3-x2+x
上的點,且曲線C在點P處切線傾斜角的取值范圍為[0,
π
4
]
,則點P橫坐標的取值范圍為
[0,2]
[0,2]

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•香洲區(qū)模擬)設P為曲線C:y=x3-x上的點,則曲線C在點P處的切線傾斜角取值范圍為
[0,
π
2
)∪[
3
4
π,π)
[0,
π
2
)∪[
3
4
π,π)

查看答案和解析>>

科目:高中數學 來源:2012年安徽師大附中高考數學五模試卷(文科)(解析版) 題型:解答題

設P為曲線C:y=x2-x+1上一點,曲線C在點P處的切線的斜率的范圍是[-1,3],則點P縱坐標的取值范圍是   

查看答案和解析>>

科目:高中數學 來源:2010-2011學年江蘇省常州高級中學高三(下)調研數學試卷(解析版) 題型:解答題

設P為曲線C:y=x2-x+1上一點,曲線C在點P處的切線的斜率的范圍是[-1,3],則點P縱坐標的取值范圍是   

查看答案和解析>>

同步練習冊答案