已知曲線C:(5-m)x2+(m-2)y2=8(m∈R)。
(1)若曲線C是焦點(diǎn)在x軸點(diǎn)上的橢圓,求m的取值范圍;
(2)設(shè)m=4,曲線c與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),直線y=kx+4與曲線c交于不同的兩點(diǎn)M、N,直線y=1與直線BM交于點(diǎn)G,求證:A,G,N三點(diǎn)共線。
解:(1)原曲線方程可化簡(jiǎn)得:
由題意,曲線C是焦點(diǎn)在x軸點(diǎn)上的橢圓可得:,
解得:
(2)證明:由已知直線代入橢圓方程化簡(jiǎn)得:(2k2+1)x2+16kx+24=0,
△=32(2k2-3)>0,
解得:
由韋達(dá)定理得:①,,②
設(shè)N(xN,kxN+4),M(xM,kxM+4),G(xG,1),
MB方程為:,

,=(xN,kxN+2),
欲證A,G,N三點(diǎn)共線,只需證共線
成立,
化簡(jiǎn)得:(3k+k)xMxN=-6(xM+xN
將①②代入可得等式成立,則A,G,N三點(diǎn)共線得證。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京)已知曲線C:(5-m)x2+(m-2)y2=8(m∈R)
(1)若曲線C是焦點(diǎn)在x軸點(diǎn)上的橢圓,求m的取值范圍;
(2)設(shè)m=4,曲線c與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),直線y=kx+4與曲線c交于不同的兩點(diǎn)M、N,直線y=1與直線BM交于點(diǎn)G.求證:A,G,N三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:(5-m)x2+(m-2)y2=8(m∈R),O為坐標(biāo)原點(diǎn).
(Ⅰ)若曲線C是焦點(diǎn)在x軸點(diǎn)上的橢圓且離心率e>
2
2
,求m的取值范圍;
(Ⅱ)設(shè)m=4,直線l過點(diǎn)(0,1)且與曲線C交于不同的兩點(diǎn)A、B,求當(dāng)△ABO的面積取得最大值時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線C:(5-m)x2+(m-2)y2=8(m∈R),O為坐標(biāo)原點(diǎn).
(Ⅰ)若曲線C是焦點(diǎn)在x軸點(diǎn)上的橢圓且離心率e>
2
2
,求m的取值范圍;
(Ⅱ)設(shè)m=4,直線l過點(diǎn)(0,1)且與曲線C交于不同的兩點(diǎn)A、B,求當(dāng)△ABO的面積取得最大值時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省淮北一中高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知曲線C:(5-m)x2+(m-2)y2=8(m∈R),O為坐標(biāo)原點(diǎn).
(Ⅰ)若曲線C是焦點(diǎn)在x軸點(diǎn)上的橢圓且離心率,求m的取值范圍;
(Ⅱ)設(shè)m=4,直線l過點(diǎn)(0,1)且與曲線C交于不同的兩點(diǎn)A、B,求當(dāng)△ABO的面積取得最大值時(shí)直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案