如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,ABCD,AB=4,BCCD=2,AA1=2,E,E1F分別是棱AD,AA1,AB的中點.

(1)證明:直線EE1∥平面FCC1;
(2)求二面角B-FC1-C的余弦值.
(1)見解析(2)
(1)證明 
法一 取A1B1的中點F1,連接FF1,C1F1,由于FF1BB1CC1,
所以F1∈平面FCC1

因此平面FCC1,即為平面C1CFF1.,連接A1D,F1C,由于 CD,
所以四邊形A1DCF1為平行四邊形,因此A1DF1C.又EE1A1D,得EE1F1C.
EE1?平面FCC1,F1C?平面FCC1,故EE1∥平面FCC1.
法二 因為FAB的中點,CD=2,AB=4,ABCD,所以CDAF.
因此四邊形AFCD為平行四邊形,所以ADFC.
CC1DD1,FCCC1C,FC?平面FCC1CC1?平面FCC1,
所以平面ADD1A1∥平面FCC1.又EE1?平面ADD1A1,所以EE1∥平面FCC1.
(2)解 法一 取FC的中點H,由于FCBCFB,所以BHFC.又BHCC1CC1FCC.所以BH⊥平面FCC1.過HHGC1FG,連接BG.由于HGC1F,BH⊥平面FCC1,所以C1F⊥平面BHG.因此BGC1F,所以∠BGH為所求二面角的平面角.在Rt△BHG中,BH,
FH=1,且△FCC1為等腰直角三角形,所以HG,BG,因此cos∠BGH=,
即所求二面角的余弦值為.
法二 過DDRCDABR,以D為坐標(biāo)原點建立如圖所示的空間直角坐標(biāo)系,則F(,1,0),B(,3,0),C(0,2,0),C1(0,2,2).
所以=(0,2,0),=(-,-1,2),=(,3,0).
FBCBCDDF,所以DBFC.又CC1⊥平面ABCD,
所以為平面FCC1的一個法向量.
設(shè)平面BFC1的一個法向量為n=(x,y,z),
則由x=1,得
因此n,所以cos〈,n〉==.
故所求二面角的余弦值為.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,OACBD的交點,EPB上任意一點.

(1)證明:平面EAC⊥平面PBD;
(2)若PD∥平面EAC,并且二面角B-AE-C的大小為45°,求PDAD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在長方體,中,,點在棱AB上移動.

(Ⅰ)證明:;
(Ⅱ)當(dāng)的中點時,求點到面的距離;
(Ⅲ)等于何值時,二面角的大小為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知正四棱錐P-ABCD的側(cè)棱與底面所成角為60°,MPA中點,連接DM,則DM與平面PAC所成角的大小是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,正方體ABCD-A1B1C1D1的棱長為a,M、N分別為A1BAC上的點,A1MANa,則MN與平面BB1C1C的位置關(guān)系是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,平面平面,四邊形是正方形,四邊形是矩形,且,的中點,則與平面所成角的正弦值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在邊長為4的菱形中,.點分別在邊上,點與點不重合,.沿翻折到的位置,使平面平面
(1)求證:平面
(2)設(shè)點滿足,試探究:當(dāng)取得最小值時,直線與平面所成角的大小是否一定大于?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.如圖,在四面體OABC中,G是底面ABC的重心,則等于
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)平面向量,則(     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案