四棱錐S-ABCD中,底面ABCD為平行四邊形,側(cè)面SBC底面ABCD.已知ABC=45o,AB=2,BC=2,SA=SB=

(1)證明:SABC;
(2)求直線SD與平面SAB所成角的正弦值.

(1)詳見解析,(2).

解析試題分析:(1)已知條件為面面垂直,因此由面面垂直性質(zhì)定理轉(zhuǎn)化為線面垂直. 作,由側(cè)面底面,得平面.證明線線垂直,有兩個(gè)思路,一是通過線面垂直轉(zhuǎn)化,二是利用空間向量計(jì)算.本題考慮到第二小題,采取空間向量方法. 利用空間向量以算代證,關(guān)鍵正確表示各點(diǎn)及對應(yīng)向量的坐標(biāo),利用空間向量數(shù)量積進(jìn)行論證.(2)利用空間向量求線面角,關(guān)鍵正確求出平面的一個(gè)法向量,利用兩向量夾角的余弦值的絕對值等于線面角的正弦值的等量關(guān)系進(jìn)行求解.
試題解析:(1)作,垂足為,連結(jié),
由側(cè)面底面,
平面   ..2
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9c/9/00o421.png" style="vertical-align:middle;" />,所以   3
,為等腰直角三角形,     4

如圖,以為坐標(biāo)原點(diǎn),軸正向,建立直角坐標(biāo)系.
,,,,    6
,,,所以    8
(2)設(shè)為平面SAB的法向量
  得     所以
令x=1                        10
              12
與平面所成的角與所成的角互余.
所以,直線與平面所成的角正弦值為           13
考點(diǎn):面面垂直性質(zhì)定理,空間向量求證線線垂直,空間向量求線面角

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,分別是正三棱柱的棱、的中點(diǎn),且棱,.
(1)求證:平面;
(2)在棱上是否存在一點(diǎn),使二面角的大小為,若存在,求的長,若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在如圖所示的幾何體中,平面,, 是的中點(diǎn),,
(1)證明:∥平面;
(2)求二面角的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,底面是邊長為2的菱形,且,以為底面分別作相同的正三棱錐,且.

(1)求證:平面;
(2)求平面與平面所成銳角二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱錐中,直線平面,且
,又點(diǎn),,分別是線段,的中點(diǎn),且點(diǎn)是線段上的動(dòng)點(diǎn).
證明:直線平面;
(2) 若,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在正四棱錐P-ABCD中,PA=AB=,點(diǎn)M,N分別在線段PA和BD上,BN=BD.
(1)若PM=PA,求證:MN⊥AD;
(2)若二面角M-BD-A的大小為,求線段MN的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱錐中,直線平面,且
,又點(diǎn),分別是線段,,的中點(diǎn),且點(diǎn)是線段上的動(dòng)點(diǎn).

(1)證明:直線平面;
(2)若,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在邊長為1的等邊三角形ABC中,D,E分別是AB,AC邊上的點(diǎn),AD=AE,FBC的中點(diǎn),AFDE交于點(diǎn)G,將沿AF折起,得到如圖所示的三棱錐,其中.

(1) 證明://平面;
(2) 證明:平面;
(3)當(dāng)時(shí),求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,三棱柱ABC-A1B1C1的所有棱長都是2,又AA1⊥平面ABC,D,E分別是AC,CC1的中點(diǎn).

(1)求證:AE⊥平面A1BD.
(2)求二面角D-BA1-A的余弦值.
(3)求點(diǎn)B1到平面A1BD的距離.

查看答案和解析>>

同步練習(xí)冊答案