設(shè)m,n是異面直線,則(1)一定存在平面α,使mα,且n∥α;(2)一定存在平面α,使mα,且n⊥α;(3)一定存在平面γ,使得m,n到平面γ距離相等;(4)一定存在無數(shù)對平面α和β,使mα,nβ且α⊥β。上述4個命題中正確命題的序號是(   )
A.(1)(2)(3)B.(1)(2)(4)C.(1)(3)(4)D.(1)(4)
C

試題分析:(1):將m平移到n,則此兩直線相交確定一平面即符合條件,故成立;
(2):m、n不一定垂直,所以(2)不成立;
(3):過m、n公垂線段中點分別作m、n的平行線所確定平面到m、n距離就相等,(3)正確;
(4):根據(jù)空間中線面的位置關(guān)系可得滿足條件的平面有無數(shù)對,故(4)正確.
故答案為:(1)(3)(4).
點評:本題主要考查了空間中直線與平面之間的位置關(guān)系,以及平面與平面之間的位置關(guān)系,是高考中常考的題型,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,面的中點,為面內(nèi)的動點,且到直線的距離為,則的最大值(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)
如圖,在底面是直角梯形的四棱錐S-ABCD中, 


(1)求四棱錐S-ABCD的體積;
(2)求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,四棱錐S—ABCD的底面為正方形,SD底面ABCD,則下列結(jié)論中正確的是                (把正確的答案都填上)

(1)AC⊥SB
(2)AB∥平面SCD
(3)SA與平面SBD所成的角等于SC與平面SBD所成的角
(4)AB與SC所成的角等于DC與SA所成的角

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)m、n是兩條不同的直線,是兩個不同的平面,則下列命題中正確的是
A.若m∥n,m,則n∥; B.若⊥β,m∥,則m⊥β;
C.若⊥β,m⊥β,則m∥D.若m⊥n,m⊥,n⊥β,則⊥β

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正方體ABCD-A1B1C1D1中,BB1與平面ACD1所成的角的余弦值為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知四棱錐平面,
,底面為直角梯形,
分別是的中點.

(1)求證:// 平面;
(2)求截面與底面所成二面角的大。
(3)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,等腰△ABC的底邊AB=6,高CD=3,點E是線段BD上異于點B、D的動點.點F在BC邊上,且EF⊥AB.現(xiàn)沿EF將△BEF折起到△PEF的位置,使PE⊥AE.記,用表示四棱錐P-ACFE的體積.

(Ⅰ)求 的表達式;
(Ⅱ)當x為何值時,取得最大值?
(Ⅲ)當V(x)取得最大值時,求異面直線AC與PF所成角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,底面ABCD是一直角梯形,,,且PA=AD=DC=AB=1.

(1)證明:平面平面
(2)設(shè)AB,PA,BC的中點依次為M、N、T,求證:PB∥平面MNT
(3)求異面直線所成角的余弦值

查看答案和解析>>

同步練習冊答案