【題目】一元二次不等式x2+ax+b>0的解集為x∈(﹣∞,﹣3)∪(1,+∞),則一元一次不等式ax+b<0的解集為 .
【答案】
【解析】解:∵一元二次不等式x2+ax+b>0的解集為x∈(﹣∞,﹣3)∪(1,+∞), ∴﹣3,1是一元二次方程式x2+ax+b=0的兩個實(shí)數(shù)根,
∴﹣3+1=﹣a,﹣3×1=b,
解得a=2,b=﹣3.
∴一元一次不等式ax+b<0即2x﹣3<0,解得 .
∴一元一次不等式ax+b<0的解集為 .
所以答案是: .
【考點(diǎn)精析】關(guān)于本題考查的解一元二次不等式,需要了解求一元二次不等式解集的步驟:一化:化二次項(xiàng)前的系數(shù)為正數(shù);二判:判斷對應(yīng)方程的根;三求:求對應(yīng)方程的根;四畫:畫出對應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項(xiàng)系數(shù)為正時,小于取中間,大于取兩邊才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a+a﹣1= (a>1)
(1)求下列各式的值:
(Ⅰ)a +a ;
(Ⅱ)a +a ;
(2)已知2lg(x﹣2y)=lgx+lgy,求loga 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某重點(diǎn)高中擬把學(xué)校打造成新型示范高中,為此制定了學(xué)生“七不準(zhǔn)”,“一日三省十問”等新的規(guī)章制度.新規(guī)章制度實(shí)施一段時間后,學(xué)校就新規(guī)章制度隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,調(diào)查卷共有10個問題,每個問題10分,調(diào)查結(jié)束后,按分?jǐn)?shù)分成5組: , , , , ,并作出頻率分布直方圖與樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在, 的數(shù)據(jù)).
(1)求樣本容量和頻率分布直方圖中的的值;
(2)在選取的樣本中,從分?jǐn)?shù)在70分以下的學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行座談會,求所抽取的2名學(xué)生中恰有一人得分在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 , 是坐標(biāo)原點(diǎn), 分別為其左右焦點(diǎn), , 是橢圓上一點(diǎn), 的最大值為
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線與橢圓交于兩點(diǎn),且
(i)求證: 為定值;
(ii)求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)國務(wù)院批復(fù)同意,重慶成功入圍國家中心城市,某校學(xué)生社團(tuán)針對“重慶的發(fā)展環(huán)境”對20名學(xué)生進(jìn)行問卷調(diào)查打分(滿分100分),得到如圖所示莖葉圖:
(Ⅰ)計(jì)算女生打分的平均分,并用莖葉圖的數(shù)字特征評價男生、女生打分誰更分散;
(Ⅱ)如圖按照打分區(qū)間、、、、繪制的直方圖中,求最高矩形的高;
(Ⅲ)從打分在70分以下(不含70分)的同學(xué)中抽取3人,求有女生被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}是等差數(shù)列,滿足a1=3,a5=15,數(shù)列{bn}滿足b1=4,b4=20,且{bn﹣an}(n∈N+)是等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線與拋物線相切,且與軸的交點(diǎn)為,點(diǎn).若動點(diǎn)與兩定點(diǎn)所構(gòu)成三角形的周長為6.
(Ⅰ) 求動點(diǎn)的軌跡的方程;
(Ⅱ) 設(shè)斜率為的直線交曲線于兩點(diǎn),當(dāng),且位于直線的兩側(cè)時,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中, 底面,底面是直角梯形, , , , ,點(diǎn)在上,且.
(Ⅰ)已知點(diǎn)在上,且,求證:平面平面;
(Ⅱ)當(dāng)二面角的余弦值為多少時,直線與平面所成的角為?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com