正方形與梯形所在平面互相垂直,,,點(diǎn)在線段上且不與重合。

(Ⅰ)當(dāng)點(diǎn)M是EC中點(diǎn)時(shí),求證:BM//平面ADEF;
(Ⅱ)當(dāng)平面BDM與平面ABF所成銳二面角的余弦值為時(shí),求三棱錐的體積.

(Ⅰ)詳見(jiàn)解析;(Ⅱ)

解析試題分析:(Ⅰ)主要利用空間向量、線面垂直可證面面垂直;(Ⅱ)通過(guò)作平行線轉(zhuǎn)化到三角形內(nèi)解角;當(dāng)然也可建系利用空間向量來(lái)解;
試題解析:(Ⅰ)以分別為軸建立空間直角坐標(biāo)系


的一個(gè)法向量
,。即 
(Ⅱ)依題意設(shè),設(shè)面的法向量
,
,則,面的法向量
,解得
為EC的中點(diǎn),到面的距離
 
考點(diǎn):本小題主要考查立體幾何線平行的證明、體積的求解,考查學(xué)生的空間想象能力和空間向量的使用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知中,,,的中點(diǎn),分別在線段上的動(dòng)點(diǎn),且,把沿折起,如下圖所示,

(Ⅰ)求證:平面;
(Ⅱ)當(dāng)二面角為直二面角時(shí),是否存在點(diǎn),使得直線與平面所成的角為,若存在求的長(zhǎng),若不存在說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,且AD∥BC,∠ABC=∠PAD=90°,側(cè)面PAD⊥底面ABCD,若PA=AB=BC=,AD=1.

(I)求證:CD⊥平面PAC;
(II)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

四棱錐底面是平行四邊形,面,,,分別為的中點(diǎn).

(1)求證:;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐中,底面為直角梯形,,,平面⊥底面的中點(diǎn),是棱上的點(diǎn),,,

(Ⅰ)求證:平面⊥平面
(Ⅱ)若為棱的中點(diǎn),求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,三棱錐中,,

(Ⅰ)求證:;
(Ⅱ)若,的中點(diǎn),求與平面所成角的正切值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在四棱錐中,底面為直角梯形,、,,的中點(diǎn).

(1)求證:平面;
(2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐的底面是正方形,棱底面,=1,的中點(diǎn).

(1)證明平面平面; 
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,為圓柱的母線,是底面圓的直徑,、分別是、的中點(diǎn),

(1)證明:;
(2)證明:;
(3)求四棱錐與圓柱的體積比.

查看答案和解析>>

同步練習(xí)冊(cè)答案