甲有一個(gè)箱子,里面放有x個(gè)紅球,y個(gè)白球(x,y≥0,且x+y=4);乙有一個(gè)箱子,里面放有2個(gè)紅球,1個(gè)白球,1個(gè)黃球.現(xiàn)在甲從箱子里任取2個(gè)球,乙從箱子里任取1個(gè)球.若取出的3個(gè)球顏色全不相同,則甲獲勝.
(1)試問甲如何安排箱子里兩種顏色球的個(gè)數(shù),才能使自己獲勝的概率最大?
(2)在(1)的條件下,求取出的3個(gè)球中紅球個(gè)數(shù)的期望.
(1)甲應(yīng)在箱子里放2個(gè)紅球2個(gè)白球才能使自己獲勝的概率最大
(2)1.5
解析試題分析:(1)要想使取出的3個(gè)球顏色全不相同,則乙必須取出黃球,甲取出的兩個(gè)球?yàn)橐粋(gè)紅球一個(gè)白球,乙取出黃球的概率是,甲取出的兩個(gè)球?yàn)橐粋(gè)紅球一個(gè)白球的概率是
,所以取出的3個(gè)球顏色全不相同的概率是,即甲獲勝的概率為,由,且,所以,當(dāng)時(shí)取等號(hào),即甲應(yīng)在箱子里放2個(gè)紅球2個(gè)白球才能使自己獲勝的概率最大.
(2)設(shè)取出的3個(gè)球中紅球的個(gè)數(shù)為ξ,則ξ的取值為0,1,2,3.
,
,
,
,
所以取出的3個(gè)球中紅球個(gè)數(shù)的期望:.
考點(diǎn):本小題主要考查互斥事件的概率的求法和隨機(jī)變量的分布列的數(shù)學(xué)期望的求法以及排列、組合公式的應(yīng)用.
點(diǎn)評(píng):隨機(jī)事件的類型比較多,解決此類問題時(shí)要分清事件類型,同時(shí)要搞清楚每種事件包含幾種情況,然后結(jié)合排列組合知識(shí)進(jìn)行求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知男人中有5%患色盲,女人中有0.25%患色盲,從100個(gè)男人和100個(gè)女人中任選一人.
(1)求此人患色盲的概率;
(2)如果此人是色盲,求此人是男人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
從裝有大小相同的2個(gè)紅球和6個(gè)白球的袋子中,每摸出2個(gè)球?yàn)橐淮卧囼?yàn),直到摸出的球中有紅球(不放回),則試驗(yàn)結(jié)束.
(Ⅰ)求第一次試驗(yàn)恰摸到一個(gè)紅球和一個(gè)白球概率;
(Ⅱ)記試驗(yàn)次數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
盒中裝有5個(gè)產(chǎn)品,其中3個(gè)一等品,2個(gè)二等品,從中不放回地取產(chǎn)品,每次1個(gè),求:
(1)取兩次,兩次都取得一等品的概率;
(2)取兩次,第二次取得一等品的概率;
(3)取三次,第三次才取得一等品的概率;
(4)取兩次,已知第二次取得一等品,求第一次取得是二等品的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
現(xiàn)有甲、乙兩個(gè)靶。某射手向甲靶射擊一次,命中的概率為,命中得1分,沒有命中得0分;向乙靶射擊兩次,每次命中的概率為,每命中一次得2分,沒有命中得0分。該射手每次射擊的結(jié)果相互獨(dú)立。假設(shè)該射手完成以上三次射擊。
(Ⅰ)求該射手恰好命中一次的概率;
(Ⅱ)求該射手的總得分X的分布列及數(shù)學(xué)期望EX.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)( )
(1)若從集合中任取一個(gè)元素,從集合中任取一個(gè)元素,
求方程恰有兩個(gè)不相等實(shí)根的概率;
(2)若從區(qū)間中任取一個(gè)數(shù),從區(qū)間中任取一個(gè)數(shù)
求方程沒有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在邊長(zhǎng)為1的正方形OABC內(nèi)取一點(diǎn)P(x,y),求:
(1)點(diǎn)P到原點(diǎn)距離小于1的概率;
(2)以x,y,1為邊長(zhǎng)能構(gòu)成三角形的概率;
(3)以x,y,1為邊長(zhǎng)能構(gòu)成銳角三角形的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某校高三年級(jí)組為了緩解學(xué)生的學(xué)習(xí)壓力,舉辦元宵猜燈謎活動(dòng)。規(guī)定每人最多猜3道,在A區(qū)猜對(duì)一道燈謎獲3元獎(jiǎng)品;在B區(qū)猜對(duì)一道燈謎獲2元獎(jiǎng)品,如果前兩次猜題后所獲獎(jiǎng)品總額超過(guò)3元即停止猜題,否則猜第三道題。假設(shè)某同學(xué)猜對(duì)A區(qū)的任意一道燈謎的概率為0.25,猜對(duì)B區(qū)的任意一道燈謎的概率為0.8,用表示該同學(xué)猜燈謎結(jié)束后所得獎(jiǎng)品的總金額。
(1)若該同學(xué)選擇先在A區(qū)猜一題,以后都在B區(qū)猜題,求隨機(jī)變量的數(shù)學(xué)期望;
(2)試比較該同學(xué)選擇都在B區(qū)猜題所獲獎(jiǎng)品總額超過(guò)3元與選擇(1)中方式所獲獎(jiǎng)品總額超過(guò)3元的概率的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)甲、乙等五名環(huán)保志愿者被隨機(jī)地分到四個(gè)不同的崗位服務(wù),每個(gè)崗位至少有一名志愿者.
(1)求甲、乙兩人同時(shí)參加崗位服務(wù)的概率;
(2)求甲、乙兩人不在同一個(gè)崗位服務(wù)的概率;
(3)設(shè)隨機(jī)變量為這五名志愿者中參加崗位服務(wù)的人數(shù),求的分布列.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com