已知點(diǎn)A(3 , 
3
)
,O是坐標(biāo)原點(diǎn),點(diǎn)P(x,y)的坐標(biāo)滿足
3
x-y≤0
x-
3
y+2≥0
y≥0
,設(shè)z為
OA
OP
上的投影,則z的取值范圍是( 。
A、[-
3
 , 
3
]
B、[-3,3]
C、[-
3
 , 3]
D、[-3 , 
3
]
分析:先根據(jù)約束條件畫出可行域,設(shè)z=x+y,再利用z的幾何意義求范圍,只需求出向量
OA
OP
的夾角的余弦值的取值范圍即可,從而得到z值即可.
解答:解:精英家教網(wǎng)z=
OA
OP
|
OP
|
=|
OA
|•cos∠AOP
=2
3
cos∠AOP
,
∠AOP∈[
π
6
 , 
6
]
,
∴當(dāng)∠AOP=
π
6
時(shí),zmax=2
3
cos
π
6
=3,
當(dāng)∠AOP=
6
時(shí),zmin=2
3
cos
6
=-3,
∴z的取值范圍是[-3,3].
∴故選B.
點(diǎn)評(píng):本題主要考查了用平面區(qū)域二元一次不等式組,以及簡(jiǎn)單的轉(zhuǎn)化思想和數(shù)形結(jié)合的思想,屬中檔題.巧妙識(shí)別目標(biāo)函數(shù)的幾何意義是我們研究規(guī)劃問題的基礎(chǔ),縱觀目標(biāo)函數(shù)包括線性的與非線性,非線性問題的介入是線性規(guī)劃問題的拓展與延伸,使得規(guī)劃問題得以深化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),已知點(diǎn)A(3 , 
3
)
,點(diǎn)P(x,y)的坐標(biāo)滿足
3
x-y≤0
x-
3
y+2≥0
y≥0
,設(shè)z為
OA
OP
上的投影,則z的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有(1)、(2)、(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.
(1)選修4-2:矩陣與變換
已知點(diǎn)A(1,0),B(2,2),C(3,0),矩陣M表示變換”順時(shí)針旋轉(zhuǎn)45°”.
(Ⅰ)寫出矩陣M及其逆矩陣M-1
(Ⅱ)請(qǐng)寫出△ABC在矩陣M-1對(duì)應(yīng)的變換作用下所得△A1B1C1的面積.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
過P(2,0)作傾斜角為α的直線l與曲線E:
x=cosθ
y=
2
2
sinθ
(θ為參數(shù))交于A,B兩點(diǎn).
(Ⅰ)求曲線E的普通方程及l(fā)的參數(shù)方程;
(Ⅱ)求sinα的取值范圍.
(3)(選修4-5 不等式證明選講)
已知正實(shí)數(shù)a、b、c滿足條件a+b+c=3,
(Ⅰ)求證:
a
+
b
+
c
≤3

(Ⅱ)若c=ab,求c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A=(3,
3
)
,點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)P(x,y)的坐標(biāo)滿足
3
x-y≤0
x-
3
y+2≥0
y≥0
,則z=
OA
OP
|
OA
|
的最大值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:惠州三模 題型:單選題

已知點(diǎn)A(3 , 
3
)
,O是坐標(biāo)原點(diǎn),點(diǎn)P(x,y)的坐標(biāo)滿足
3
x-y≤0
x-
3
y+2≥0
y≥0
,設(shè)z為
OA
OP
上的投影,則z的取值范圍是( 。
A.[-
3
 , 
3
]
B.[-3,3]C.[-
3
 , 3]
D.[-3 , 
3
]

查看答案和解析>>

同步練習(xí)冊(cè)答案