直三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點.
(1)求證:直線AB1⊥平面A1BD.
(2)求二面角A-A1D-B正弦值的大小.
(1)證明過程詳見試題解析;(2)二面角A-A1D-B正弦值為.
解析試題分析:(1)建立如下圖的空間坐標系,要證直線AB1⊥平面A1BD,只需證明
即可.(2)先求出平面A1AD的一個法向量,再用向量夾角公式求二面角A-A1D-B正弦值.
試題解析:(1)取BC中點O,連接AO,
∵△ABC為正三角形,∴AO⊥BC,
∵直棱柱ABC-A1B1C1,∴平面ABC⊥平面BCC1B1且相交于BC,
∴AO⊥平面BCC1B1.取B1C1中點O1,則OO1∥BB1,∴OO1⊥BC.
以O為原點,如圖建立空間直角坐標系O-xyz,
則B(1,0,0),D(-1,1,0),A1(0,2,)A(0,0,),B1(1,2,0),C(-1,0,0),
∴
∴直線AB1⊥平面A1BD. 6分
(2)設平面A1AD的一個法向量為
n=(x,y,z).
∵
∴令z=1得n=(-,0,1)為平面A1AD的一個法向量.
由(1)知為平面A1BD的法向量.
∴
∴二面角A-A1D-B正弦值的大小為. 12分
考點:空間向量、直線與平面的位置關系.
科目:高中數學 來源: 題型:解答題
如圖,在四面體ABCD中作截面PQR,若PQ,CB的延長線交于M,RQ,DB的延長線交于N,RP,DC的延長線交于K,
求證:M,N,K三點共線.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在長方體ABCD-A1B1C1D1中,底面A1B1C1D1是正方形,O是BD的中點,E是棱AA1上任意一點.
(1)證明:BD⊥EC1;
(2)如果AB=2,AE=,OE⊥EC1,求AA1的長.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在如圖所示的幾何體中,四邊形ABCD為正方形,為直角三角形,,且.
(1)證明:平面平面;
(2)若AB=2AE,求異面直線BE與AC所成角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在三棱錐S—ABC中,SC⊥平面ABC,點P、M分別是SC和SB的中點,設PM=AC=1,∠ACB=90°,直線AM與直線SC所成的角為60°。
(1)求證:平面MAP⊥平面SAC。
(2)求二面角M—AC—B的平面角的正切值;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知是圓的直徑,垂直圓所在的平面,是圓上任一點,是線段的中點,是線段上的一點.
求證:(Ⅰ)若為線段中點,則∥平面;
(Ⅱ)無論在何處,都有.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com