已知函數(shù)(a是常數(shù)且a>0).對于下列命題:
①函數(shù)f(x)的最小值是-1;
②函數(shù)f(x)在R上是單調(diào)函數(shù);
③若f(x)>0在上恒成立,則a的取值范圍是a>1;
④對任意x1<0,x2<0且x1≠x2,恒有
其中正確命題的序號是   
【答案】分析:①由圖只需說明在點x=0處函數(shù)f(x)的最小值是-1;
②只需說明函數(shù)f(x)在R上的單調(diào)性即可;
③只需說明f(x)>0在上恒成立,則當x=時,函數(shù)取得最小值,從而求得a的取值范圍是a>1;
④已知函數(shù)在(-∝,0)上的圖象在[0,+∞)上是下凹的,所以任取兩點連線應在圖象的上方,故D正確.
解答:
解:①由圖只需說明在點x=0處函數(shù)f(x)的最小值是-1;故正確;
②由圖象說明函函數(shù)f(x)在R上不是單調(diào)函數(shù);故錯;
③只需說明f(x)>0在上恒成立,則當x=時,函數(shù)取得最小值,求得a的取值范圍是a>1;故正確;
④已知函數(shù)函數(shù)在(-∝,0)上的圖象在[0,+∞)上是下凹的,所以任取兩點連線應在圖象的上方,
即f( )<,故正確.
故答案為:①③④.
點評:利用函數(shù)的圖象研究函數(shù)的單調(diào)區(qū)間以及根據(jù)函數(shù)的增減性得到函數(shù)的最值是常用的方法,解答本題的關鍵是圖象法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2012-2013學年安徽省鳳陽藝榮高考輔導學校高三(上)第三次月考數(shù)學試卷(文科)(解析版) 題型:填空題

已知函數(shù)(a是常數(shù)且a>0).對于下列命題:
①函數(shù)f(x)的最小值是-1;
②函數(shù)f(x)在R上是單調(diào)函數(shù);
③若f(x)>0在上恒成立,則a的取值范圍是a>1;
④對任意x1<0,x2<0且x1≠x2,恒有
其中正確命題的序號是   

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年貴州省黔西南州普安二中高三(上)8月月考數(shù)學試卷(理科)(解析版) 題型:填空題

已知函數(shù)(a是常數(shù)且a>0).對于下列命題:
①函數(shù)f(x)的最小值是-1;
②函數(shù)f(x)在R上是單調(diào)函數(shù);
③若f(x)>0在上恒成立,則a的取值范圍是a>1;
④對任意x1<0,x2<0且x1≠x2,恒有
其中正確命題的序號是   

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年河北省唐山市灤南縣司各莊中學高三(上)11月月考數(shù)學試卷(解析版) 題型:填空題

已知函數(shù)(a是常數(shù)且a>0).對于下列命題:
①函數(shù)f(x)的最小值是-1;
②函數(shù)f(x)在R上是單調(diào)函數(shù);
③若f(x)>0在上恒成立,則a的取值范圍是a>1;
④對任意x1<0,x2<0且x1≠x2,恒有
其中正確命題的序號是   

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年河南省中原六校高三第一次聯(lián)考數(shù)學試卷(文科)(解析版) 題型:解答題

已知函數(shù)(a是常數(shù)且a>0).對于下列命題:
①函數(shù)f(x)的最小值是-1;
②函數(shù)f(x)在R上是單調(diào)函數(shù);
③若f(x)>0在上恒成立,則a的取值范圍是a>1;
④對任意x1<0,x2<0且x1≠x2,恒有
其中正確命題的序號是   

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012年河南省豫東六校聯(lián)誼高三第一次聯(lián)考數(shù)學試卷(文科)(解析版) 題型:解答題

已知函數(shù)(a是常數(shù)且a>0).對于下列命題:
①函數(shù)f(x)的最小值是-1;
②函數(shù)f(x)在R上是單調(diào)函數(shù);
③若f(x)>0在上恒成立,則a的取值范圍是a>1;
④對任意x1<0,x2<0且x1≠x2,恒有
其中正確命題的序號是   

查看答案和解析>>

同步練習冊答案