【題目】已知集合是滿足下列性質(zhì)的函數(shù)的全體:在定義域內(nèi)存在實(shí)數(shù),使得.

1)判斷函數(shù)為常數(shù))是否屬于集合;

2)若屬于集合,求實(shí)數(shù)的取值范圍;

3)若,求證:對(duì)任意實(shí)數(shù),都有屬于集合.

【答案】1)屬于;(2;(3)證明見解析

【解析】

1)利用時(shí),方程,此方程恒成立,說明函數(shù)為常數(shù))屬于集合;

2)由屬于集合,推出有實(shí)數(shù)解,即方程有實(shí)數(shù)解,分兩種情況,得到結(jié)果;

3)當(dāng)時(shí),方程有解,令,則上的圖象是連續(xù)的,當(dāng)時(shí),當(dāng)時(shí),判定函數(shù)是否有零點(diǎn),證明對(duì)任意實(shí)數(shù),都有屬于集合.

1)當(dāng)時(shí),方程,

此方程恒成立,

所以函數(shù)為常數(shù))屬于集合;

2)由屬于集合,

可得方程有實(shí)數(shù)解,

,整理得方程有實(shí)數(shù)解,

當(dāng)時(shí),方程有實(shí)根,

當(dāng)時(shí),有,

解得

綜上,實(shí)數(shù)的取值范圍為

3)當(dāng)時(shí),方程有解,

等價(jià)于有解,

整理得有解,

,則上的圖象是連續(xù)的,

當(dāng)時(shí),

上有一個(gè)零點(diǎn),

當(dāng)時(shí),

上至少有一個(gè)零點(diǎn),

故對(duì)任意的實(shí)數(shù),上都有零點(diǎn),即方程總有解,

所以對(duì)任意實(shí)數(shù),都有屬于集合.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知斜率為1的直線與橢圓交于,兩點(diǎn),且線段的中點(diǎn)為,橢圓的上頂點(diǎn)為.

(1)求橢圓的離心率;

(2)設(shè)直線與橢圓交于兩點(diǎn),若直線的斜率之和為2,證明:過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求的單調(diào)區(qū)間;

(2)若函數(shù)上無零點(diǎn),求最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y2=2px的焦點(diǎn)為F,準(zhǔn)線方程是x=﹣1

I)求此拋物線的方程;

)設(shè)點(diǎn)M在此拋物線上,且|MF|=3,若O為坐標(biāo)原點(diǎn),求△OFM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年春節(jié)期間,某超市準(zhǔn)備舉辦一次有獎(jiǎng)促銷活動(dòng),若顧客一次消費(fèi)達(dá)到400元?jiǎng)t可參加一次抽獎(jiǎng)活動(dòng),超市設(shè)計(jì)了兩種抽獎(jiǎng)方案.

方案一:一個(gè)不透明的盒子中裝有30個(gè)質(zhì)地均勻且大小相同的小球,其中10個(gè)紅球,20個(gè)白球,攪拌均勻后,顧客從中隨機(jī)抽取一個(gè)球,若抽到紅球則顧客獲得60元的返金券,若抽到白球則獲得20元的返金券,且顧客有放回地抽取3次.

方案二:一個(gè)不透明的盒子中裝有30個(gè)質(zhì)地均勻且大小相同的小球,其中10個(gè)紅球,20個(gè)白球,攪拌均勻后,顧客從中隨機(jī)抽取一個(gè)球,若抽到紅球則顧客獲得80元的返金券,若抽到白球則未中獎(jiǎng),且顧客有放回地抽取3次.

(1)現(xiàn)有兩位顧客均獲得抽獎(jiǎng)機(jī)會(huì),且都按方案一抽獎(jiǎng),試求這兩位顧客均獲得180元返金券的概率;

(2)若某顧客獲得抽獎(jiǎng)機(jī)會(huì).

①試分別計(jì)算他選擇兩種抽獎(jiǎng)方案最終獲得返金券的數(shù)學(xué)期望;

②為了吸引顧客消費(fèi),讓顧客獲得更多金額的返金券,該超市應(yīng)選擇哪一種抽獎(jiǎng)方案進(jìn)行促銷活動(dòng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的選項(xiàng)為(

①平面外一條直線與平面內(nèi)的一條直線平行,則該直線與此平面平行;

②一個(gè)平面內(nèi)的一條直線與另一個(gè)平面平行,則這兩個(gè)平面平行;

③一條直線與一個(gè)平面內(nèi)的兩條直線垂直,則該直線與此平面垂直;

④一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直.

A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)四件參賽作品只評(píng)一件一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲,乙,丙,丁四位同學(xué)對(duì)這四件參賽作品預(yù)測(cè)如下:

甲說:作品獲得一等獎(jiǎng)”; 乙說:作品獲得一等獎(jiǎng)”;

丙說:兩件作品未獲得一等獎(jiǎng)”; 丁說:作品獲得一等獎(jiǎng)”.

評(píng)獎(jiǎng)揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為正整數(shù),記平面點(diǎn)集.問:平面內(nèi)最少要有多少條直線,它們的并集才能包含,但不含點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓軸正、負(fù)半軸分別交于點(diǎn).橢圓為短軸,且離心率為.

1)求的方程;

2)過點(diǎn)的直線分別與圓,曲線交于點(diǎn)(異于點(diǎn).直線分別與軸交于點(diǎn).,求的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案