已知m∈R,函數(shù)f(x)=
|2x+1|,x<1
log2(x-1),x>1
g(x)=x2-2x+2m-1,若函數(shù)y=f(g(x))-m有6個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是(  )
A、(0,
3
5
B、(
3
5
,
3
4
)
C、(
3
4
,1)
D、(1,3)
考點(diǎn):根的存在性及根的個(gè)數(shù)判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由于函數(shù)f(x)=
|2x+1|,x<1
log2(x-1),x>1
,g(x)=x2-2x+2m-1.可得當(dāng)g(x)=(x-1)2+2m-2<1,即(x-1)2<3-2m時(shí),y=f(g(x))=|2g(x)+1|=|2(x-1)2+4m-3|.當(dāng)g(x)=(x-1)2+2m-2>1,即(x-1)2>3-2m時(shí),則y=f(g(x))=log2[(x-1)2+2m-3].再對(duì)m分類討論,利用直線y=m與函數(shù)
y=f(g(x))圖象的交點(diǎn)必須是6個(gè)即可得出.
解答:解:∵函數(shù)f(x)=
|2x+1|,x<1
log2(x-1),x>1
,g(x)=x2-2x+2m-1.
∴當(dāng)g(x)=(x-1)2+2m-2<1時(shí),即(x-1)2<3-2m時(shí),則y=f(g(x))=|2g(x)+1|=|2(x-1)2+4m-3|.
當(dāng)g(x)=(x-1)2+2m-2>1時(shí),即(x-1)2>3-2m時(shí),則y=f(g(x))=log2[(x-1)2+2m-3].
①當(dāng)3-2m≤0即m≥
3
2
時(shí),y=m只與y=f(g(x))=log2[(x-1)2+2m-3]的圖象有兩個(gè)交點(diǎn),不滿足題意,應(yīng)該舍去.
②當(dāng)m<
3
2
時(shí),y=m與y=f(g(x))=log2[(x-1)2+2m-3]的圖象有兩個(gè)交點(diǎn),需要直線y=m與函數(shù)
y=f(g(x))=|2g(x)+1|=|2(x-1)2+4m-3|的圖象有四個(gè)交點(diǎn)時(shí)才滿足題意.
∴0<m<3-4m,又m<
3
2
,解得0<m<
3
5

綜上可得:m的取值范圍是0<m<
3
5

故選A.
點(diǎn)評(píng):本題考查了分段函數(shù)的圖象與性質(zhì)、含絕對(duì)值函數(shù)的圖象、對(duì)數(shù)函數(shù)的圖象、函數(shù)圖象的交點(diǎn)的與函數(shù)零點(diǎn)的關(guān)系,考查了推理能力與計(jì)算能力、數(shù)形結(jié)合的思想方法、推理能力與計(jì)算能力,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ln(x-1)(x>1)的反函數(shù)是( 。
A、y=ex+1(x>1)
B、y=10x+1(x>1)
C、y=ex+1(x∈R)
D、y=10x+1(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用餐時(shí)客人要求:將溫度為10°C、質(zhì)量為0.25kg的同規(guī)格的某種袋裝飲料加熱至30℃-40℃.服務(wù)員將x袋該種飲料同時(shí)放入溫度為80°C、2.5kg質(zhì)量為的熱水中,5分鐘后立即取出.設(shè)經(jīng)過5分鐘加熱后的飲料與水的溫度恰好相同,此時(shí),m1kg該飲料提高的溫度△t1°C與m2kg水降低的溫度△t2°C滿足關(guān)系式m1×△t1=0.8×m2×△t2,則符合客人要求的x可以是(  )
A、4B、10C、16D、22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知菱形ABCD的對(duì)角線AC長(zhǎng)為4,則
AD
AC
=( 。
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為公差不為零的等差數(shù)列{an}的前n項(xiàng)和,若S9=3a8,則
S15
3a5
=( 。
A、15B、17C、19D、21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2-ax+1在區(qū)間(
1
2
, 3)
上有零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A、(2,+∞)
B、[2,+∞)
C、[2 
5
2
)
D、[2 
10
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐D-ABC中,AB=BC=1,AD=2,BD=
5
,AC=
2
,BC⊥AD,則關(guān)于該三棱錐的下列敘述正確的為( 。
A、表面積S=
1
2
5
+2
2
+3)
B、表面積為S=
1
2
5
+2
2
+2)
C、體積為V=1
D、體積為V=
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知隨機(jī)變量ξ服從正態(tài)分布N(0,σ2).則“P(-2≤ξ≤2)=0.9”是“P(ξ>2)>0.04”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱的側(cè)棱長(zhǎng)和底邊長(zhǎng)均為2,且側(cè)棱AA1⊥底面A1B1C1,正視圖是邊長(zhǎng)為2的正方形,俯視圖為一個(gè)等邊三角形,則該三棱柱的側(cè)視圖的面積為(  )
A、
3
B、2
3
C、4
D、4
3

查看答案和解析>>

同步練習(xí)冊(cè)答案