(滿分12分)
已知正方體ABCD—A1B1C1D1,其棱長為2,O是底ABCD對角線的交點。
求證:
(1)C1O∥面AB1D1;
(2)A1C⊥面AB1D1。
(3)若M是CC1的中點,求證:平面AB1D1⊥平面MB1D1
證明:
連結(jié)
,設(shè)
連結(jié)
,
是正方體
是平行四邊形
且
又
分別是
的中點,
且
是平行四邊形
面
,
面
面
4分
(2)
面
又
,
同理可證
,
又
面
8分
(3)設(shè)B1D1的中點為N,則AN⊥B1D1,MN⊥B1D1,則
(也可以通過定義證明二面角是直二面角) 12分
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分14分)如圖,正方形
、
的邊長都是1,平面
平面
,點
在
上移動,點
在
上移動,若
(
)
(I)求
的長;
(II)
為何值時,
的長最;
(III)當
的長最小時,求面
與面
所成銳二面角余弦值的大小.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分)
如圖,平面ABEF
平面ABCD,四邊形ABEF與ABCD都是直角梯形,
(I)證明:C,D,F(xiàn),E四點共面;
(II)設(shè)AB=BC=BE,求二面角A—ED—B的大小。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,在三棱錐
中,
,
,
,
,
, 點
,
分別在棱
上,且
,
(I)求證:
平面
;
(II)當
為
的中點時,求
與平面
所成的角的大小;
(III)是否存在點
使得二面角
為直二面角?并說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分)已知三棱錐A-PBC ∠ACB=90°
AB=20 BC=4
PA
PC,D為AB中點且△PDB為正三角形
(1)求
證:BC⊥平面PAC;
(2)求三棱錐D-PBC的體積。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
如圖,四棱錐
的底面
為菱形,
平面
,
,
、
分別為
、
的中點。
(I)求證:
平面
;
(Ⅱ)求三棱錐
的體積;
(Ⅲ)求平面
與平面
所成的銳二面角大小的余弦值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)
在長方體ABCD—A
1B
1C
1D
1,中,AD=AA
1=1,AB=2,點E在棱AB上移動.
(1)證明:D
1E⊥A
1D;
(2)當E為AB的中點時,求三棱錐E-ACD
1的體積;
(3)AE等于何值時,二面角D
1—EC—D的大小為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)如圖所示,在四棱臺
中, 底面ABCD是正方形,且
底面
,
.
(1)求異面直線
與
所成角的余弦值;
(2)試在平面
中確定一個點
,使得
平面
;
(3)在(2)的條件下,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
三棱柱
的
底面是邊長為1cm的正三角形,側(cè)面是長方形,側(cè)棱長為4cm,一個小蟲從A點出發(fā)沿表面一圈到達
點,則小蟲所行的最短路程為__________cm
查看答案和解析>>