【題目】平面直角坐標系中,已知橢圓的離心率為,左右焦點分別為和,以點為圓心,以為半徑的圓與以點為圓心,以為半徑的圓相交,且交點在橢圓上.
()求橢圓的方程.
()設(shè)橢圓,為橢圓上任意一點,過點的直線交橢圓于、兩點,射線交橢圓于點.
①求的值.
②求面積的最大值.
【答案】(1) (2) ①2②
【解析】試題分析:(1)利用橢圓定義可得,再結(jié)合離心率得到橢圓的方程;(2)(i)設(shè)P(x0,y0),|=λ,求得Q的坐標,分別代入橢圓C,E的方程,化簡整理,即可得到所求值;
(ii)設(shè)A(x1,y1),B(x2,y2),將直線y=kx+m代入橢圓E的方程,運用韋達定理,三角形的面積公式,將直線y=kx+m代入橢圓C的方程,由判別式大于0,可得t的范圍,結(jié)合二次函數(shù)的最值,又△ABQ的面積為3S,即可得到所求的最大值.
試題解析:
解:()設(shè)兩圓的一個交點為,則,,由在橢圓上可得,則,,得,則,
故橢圓方程為.
()①橢圓為方程為,
設(shè),則有,
在射線上,設(shè),
代入橢圓可得,
解得,即,
.
②(理)由①可得為中點,在直線上,則到直線的距離與到直線的距離相等,
故,聯(lián)立,
可得,
則,,
,
聯(lián)立,得,
,
,
,
,
當且僅當時等號成立,
故最大值為.
科目:高中數(shù)學 來源: 題型:
【題目】為研究冬季晝夜溫差大小對某反季節(jié)大豆新品種發(fā)芽率的影響,某農(nóng)科所記錄了5組晝夜溫差與100顆種子發(fā)芽數(shù),得到如下資料:
組號 | 1 | 2 | 3 | 4 | 5 |
溫差() | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
該所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求出線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.
(1)若選取的是第1組與第5組的兩組數(shù)據(jù),請根據(jù)第2組至第4組的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合A={x|1<log2x<3,x∈N*},B={4,5,6,7,8}.
(1)從A∪B中取出3個不同的元素組成三位數(shù),則可以組成多少個?
(2)從集合A中取出1個元素,從集合B中取出3個元素,可以組成多少個無重復(fù)數(shù)字且比4000大的自然數(shù)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城鎮(zhèn)社區(qū)為了豐富轄區(qū)內(nèi)廣大居民的業(yè)余文化生活,創(chuàng)建了社區(qū)“文化丹青”大型活動場所,配備了各種文化娛樂活動所需要的設(shè)施,讓廣大居民健康生活、積極向上,社區(qū)最近四年內(nèi)在“文化丹青”上的投資金額統(tǒng)計數(shù)據(jù)如表: (為了便于計算,把2015年簡記為5,其余以此類推)
年份(年) | 5 | 6 | 7 | 8 |
投資金額(萬元) | 15 | 17 | 21 | 27 |
(Ⅰ)利用所給數(shù)據(jù),求出投資金額與年份之間的回歸直線方程;
(Ⅱ) 預(yù)測該社區(qū)在2019年在“文化丹青”上的投資金額.
附:對于一組數(shù)據(jù), 其回歸直線的斜率和截距的最小二乘估計分別為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了增強消防安全意識,某中學對全體學生做了一次消防知識講座,從男生中隨機抽取50人,從女生中隨機抽取70人參加消防知識測試,統(tǒng)計數(shù)據(jù)得到如下列聯(lián)表:
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
男生 | 15 | 35 | 50 |
女生 | 30 | 40 | 70 |
總計 | 45 | 75 | 120 |
(Ⅰ)試判斷是否有的把握認為消防知識的測試成績優(yōu)秀與否與性別有關(guān);
附:
K2=
(Ⅱ)為了宣傳消防安全知識,從該校測試成績獲得優(yōu)秀的同學中采用分層抽樣的方法,隨機選出6名組成宣傳小組,現(xiàn)從這6人中隨機抽取2名到校外宣傳,求到校外宣傳的同學中至少有1名是男生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋中裝有紅球3個、白球2個、黑球1個,從中任取2個,則互斥而不對立的兩個事件是( )
A. 至少有一個白球;至少有一個紅球 B. 至少有一個白球;紅、黑球各一個
C. 恰有一個白球;一個白球一個黑球 D. 至少有一個白球;都是白球
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量,,函數(shù)的最小值為
(1)當時,求的值;
(2)求;
(3)已知函數(shù)為定義在R上的增函數(shù),且對任意的都滿足
問:是否存在這樣的實數(shù)m,使不等式 +對所有
恒成立,若存在,求出m的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com