已知命題:方程表示焦點在軸上的雙曲線。命題曲線軸交于不同的兩點,若為假命題,為真命題,求實數(shù)的取值范圍。
.

試題分析:分別求出命題p、q為真命題時m的范圍,根據(jù)復合命題真值表可得命題p,q命題一真一假,分p真q假和p假q真求出m的范圍,再求并集.
試題解析:若真得:                                   2分;
真得:                          4分;
為假命題,也為真命題
命題一真一假                                 6分;
假:;                            8分;
真:                                 10分
∴實數(shù)的取值范圍為:           12分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知中心在原點的雙曲線C的一個焦點是F1(一3,0),一條漸近線的方程是
(1)求雙曲線C的方程;
(2)若以k(k≠0)為斜率的直線與雙曲線C相交于兩個不同的點M, N,且線段MN的
垂直平分線與兩坐標軸圍成的三角形的面積為,求k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線C=1(a>0,b>0)的實軸長為2,離心率為2,則雙曲線C的焦點坐標是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線C與橢圓=1有共同的焦點F1,F2,且離心率互為倒數(shù).若雙曲線右支上一點P到右焦點F2的距離為4,則PF2的中點M到坐標原點O的距離等于(  ).
A.3 B.4 C.2 D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線的右焦點與拋物線y2=12x的焦點重合,則該雙曲線的焦點到其漸近線的距離等于                     .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線的左右兩支上各有一點,點在直線上的射影是點,若直線過右焦點,則直線必過點(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線的離心率大于的充分必要條件是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)雙曲線的兩條漸近線與直線分別交于兩點,為該雙曲線的右焦點.若, 則該雙曲線的離心率的取值范圍是(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線=1(a>0,b>0)的漸近線方程為y=±x,則它的離心率為________.

查看答案和解析>>

同步練習冊答案