規(guī)定函數(shù)y=f(x)圖象上的點(diǎn)到坐標(biāo)原點(diǎn)距離的最小值叫做函數(shù)y=f(x)的“中心距離”,給出以下四個(gè)命題:
①函數(shù)y=
1
x
的“中心距離”大于1;
②函數(shù)y=
-x2-4x+5
的“中心距離”大于1;
③若函數(shù)y=f(x)(x∈R)與y=g(x)(x∈R)的“中心距離”相等,則函數(shù)h(x)=f(x)-g(x)至少有一個(gè)零點(diǎn).
以上命題是真命題的是( 。
A、①②B、②③C、①③D、①
分析:①②利用新定義,計(jì)算函數(shù)y=f(x)圖象上的點(diǎn)到坐標(biāo)原點(diǎn)距離的最小值,即可判定,③取特例.
解答:解:①函數(shù)y=
1
x
圖象上的點(diǎn)到原點(diǎn)距離d=
x2+
1
x2
2
>1,即函數(shù)y=
1
x
的“中心距離”大于1,正確;
②函數(shù)y=
-x2-4x+5
圖象上的點(diǎn)到原點(diǎn)距離d=
x2+(-x2-4x+5)
=
5-4x
≥1,錯(cuò)誤;
③取函數(shù)y=f(x)=x2+1,y=g(x)=-x2-1,函數(shù)h(x)=f(x)-g(x)=2x2+2,沒(méi)有零點(diǎn),錯(cuò)誤.
故選:D.
點(diǎn)評(píng):本題考查新定義,考查距離的計(jì)算,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

規(guī)定maxf(x),g(x)=
f(x),f(x)≥g(x)
g(x),f(x)<g(x)
,若定義在R上的奇函數(shù)F(x)滿足:當(dāng)x>0時(shí),F(xiàn)(x)=max1-log2x,1+log2x.
(1)求F(x)的解析式,并寫(xiě)出F(x)的單調(diào)區(qū)間;
(2)若方程F(x)=m有唯一實(shí)數(shù)解,求實(shí)數(shù)m的值;
(3)求t>0時(shí),函數(shù)y=F(x)在x∈[t,2]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)定義域分別是Df、Dg的函數(shù)y=f(x)、y=g(x),規(guī)定:函數(shù)h(x)=
f(x)•g(x)  當(dāng)x∈Df且x∈Dg
f(x)          當(dāng)x∈Df且x∉Dg
g(x)          當(dāng)x∉Df且x∈Dg

(1)若函數(shù)f(x)=
1
x
,g(x)=x2+4,寫(xiě)出函數(shù)h(x)的解析式;
(2)求問(wèn)題(1)中函數(shù)h(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于定義域分別為M,N的函數(shù)y=f(x),y=g(x),規(guī)定:函數(shù)h(x)=
f(x)•g(x),當(dāng)x∈M且x∈N
f(x),當(dāng)x∈M且x∉N
g(x),當(dāng)x∉M且x∈N

(1)若函數(shù)f(x)=
1
x+1
,g(x)=x2
+2x+2,x∈R,求函數(shù)h(x)的取值集合;
(2)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,2π],請(qǐng)問(wèn),是否存在一個(gè)定義域?yàn)镽的函數(shù)y=f(x)及一個(gè)α的值,使得h(x)=cosx,若存在請(qǐng)寫(xiě)出一個(gè)f(x)的解析式及一個(gè)α的值,若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

規(guī)定函數(shù)y=f(x)圖象上的點(diǎn)到坐標(biāo)原點(diǎn)距離的最小值叫做函數(shù)y=f(x)的“中心距離”,給出以下四個(gè)命題:以下命題是真命題的是
 
(寫(xiě)出所有其命題的序號(hào))
①函數(shù)y=
1
x
的“中心距離”大于1;
②函數(shù)y=
5-4x-x2
的“中心距離”大于1;
③若函數(shù)y=f(x)(x∈R)與y=g(x)(x∈R)的“中心距離相等”,則函數(shù)L(x)=f(x)-g(x)至少有一個(gè)零點(diǎn);
④f(x)是其定義域上的奇函數(shù),是它的“中心距離”為0的充分不必要條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案