科目:高中數(shù)學 來源: 題型:解答題
在平面直角坐標系xOy中,橢圓C:=1(a>b>0)的右焦點為F(4m,0)(m>0,m為常數(shù)),離心率等于0.8,過焦點F、傾斜角為θ的直線l交橢圓C于M、N兩點.
(1)求橢圓C的標準方程;
(2)若θ=90°,,求實數(shù)m;
(3)試問的值是否與θ的大小無關,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知,直線,為平面上的動點,過點作的垂線,垂足為點,且.
(1)求動點的軌跡曲線的方程;
(2)設動直線與曲線相切于點,且與直線相交于點,試探究:在坐標平面內(nèi)是否存在一個定點,使得以為直徑的圓恒過此定點?若存在,求出定點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設A、B分別為橢圓=1(a>b>0)的左、右頂點,橢圓長半軸的長等于焦距,且直線x=4是它的右準線.
(1)求橢圓的方程;
(2)設P為橢圓右準線上不同于點(4,0)的任意一點,若直線BP與橢圓相交于兩點B、N,求證:∠NAP為銳角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓=1(a>b>0)的離心率為,且過點P,A為上頂點,F(xiàn)為右焦點.點Q(0,t)是線段OA(除端點外)上的一個動點,過Q作平行于x軸的直線交直線AP于點M,以QM為直徑的圓的圓心為N.
(1)求橢圓方程;
(2)若圓N與x軸相切,求圓N的方程;
(3)設點R為圓N上的動點,點R到直線PF的最大距離為d,求d的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓=1(a>b>0)的離心率e=,連結(jié)橢圓的四個頂點得到的菱形的面積為4.
(1)求橢圓的方程;
(2)設直線l與橢圓相交于不同的兩點A,B.已知點A的坐標為(-a,0).若|AB|=,求直線l的傾斜角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知中心在原點的雙曲線的右焦點為,實軸長.
(1)求雙曲線的方程
(2)若直線與雙曲線恒有兩個不同的交點,且為銳角(其中為原點),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設拋物線y2=2px(p>0)的焦點為F,經(jīng)過點F的直線交拋物線于A、B兩點,點C在拋物線的準線上,且BC∥x軸,證明:直線AC經(jīng)過原點O.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知常數(shù),向量,經(jīng)過定點以為方向向量的直線與經(jīng)過定點以為方向向量的直線相交于,其中,
(1)求點的軌跡的方程;(2)若,過的直線交曲線于兩點,求的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com