【題目】本市某玩具生產(chǎn)公司根據(jù)市場調(diào)查分析,決定調(diào)整產(chǎn)品生產(chǎn)方案,準備每天生產(chǎn), 三種玩具共100個,且種玩具至少生產(chǎn)20個,每天生產(chǎn)時間不超過10小時,已知生產(chǎn)這些玩具每個所需工時(分鐘)和所獲利潤如表:

玩具名稱

工時(分鐘)

5

7

4

利潤(元)

5

6

3

(Ⅰ)用每天生產(chǎn)種玩具個數(shù)種玩具表示每天的利潤(元);

(Ⅱ)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?

【答案】(I);(II)最大利潤為元.

【解析】試題分析:(1)依據(jù)題設(shè)條件借助數(shù)表中的數(shù)據(jù)及數(shù)據(jù)之間的關(guān)系,建立二元一次目標函數(shù)關(guān)系;(2)借助題設(shè)條件建立二元一次不等式組,運用線性規(guī)劃的知識數(shù)形結(jié)合,聯(lián)立方程組分析求出最優(yōu)解即可,再代入目標函數(shù)即可獲解:

試題解析:

(Ⅰ)

(Ⅱ)

最優(yōu)解為

(元).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知橢圓過點 , 分別為橢圓的右、下頂點,且

(1)求橢圓的方程;

(2)設(shè)點在橢圓內(nèi),滿足直線, 的斜率乘積為,且直線, 分別交橢圓于點,

(i) 若 關(guān)于軸對稱,求直線的斜率;

(ii) 求證: 的面積與的面積相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中, , , ,四邊形為矩形,平面平面 .

(Ⅰ)求證: 平面;

(Ⅱ)點在線段上運動,設(shè)平面與平面所成銳二面角為,試求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項和是等差數(shù)列,且.

)求數(shù)列的通項公式;

)令.求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從高一年級A,B兩個班中各選出7名學(xué)生參加物理競賽,他們的成績(單位:分)的莖葉圖如圖所示,其中A班學(xué)生的平均分是85分

(1)求m的值,并計算A班7名學(xué)生成績的方差s2;
(2)從成績在90分以上的學(xué)生中隨機抽取兩名學(xué)生,求至少有一名A班學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項不為零的數(shù)列的前項和為,且,

1)若成等比數(shù)列,求實數(shù)的值;

2)若成等差數(shù)列,

①求數(shù)列的通項公式;

②在間插入個正數(shù),共同組成公比為的等比數(shù)列,若不等式對任意的恒成立,求實數(shù)的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是梯形,AD∥BC,側(cè)面ABB1A1為菱形,∠DAB=∠DAA1
(Ⅰ)求證:A1B⊥BC;
(Ⅱ)若AD=AB=3BC,∠A1AB=60°,點D在平面ABB1A1上的射影恰為線段A1B的中點,求平面DCC1D1與平面ABB1A1所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= x3+ax2+bx+ (a,b是實數(shù)),且f′(2)=0,f(﹣1)=0.
(1)求實數(shù)a,b的值;
(2)當(dāng)x∈[﹣1,t]時,求f(x)的最大值g(t)的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某中學(xué)聯(lián)盟舉行了一次“盟校質(zhì)量調(diào)研考試”活動,為了解本次考試學(xué)生的某學(xué)科成績情況,從中抽取部分學(xué)生的分數(shù)(滿分為分,得分取正整數(shù),抽取學(xué)生的分數(shù)均在之內(nèi))作為樣本(樣本容量為)進行統(tǒng)計,按照的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(莖葉圖中僅列出了得分在的數(shù)據(jù))

(Ⅰ)求樣本容量和頻率分布直方圖中的的值;

(Ⅱ)在選取的樣本中,從成績在分以上(含分)的學(xué)生中隨機抽取名學(xué)生參加“省級學(xué)科基礎(chǔ)知識競賽”,求所抽取的名學(xué)生中恰有一人得分在內(nèi)的概率.

查看答案和解析>>

同步練習(xí)冊答案