如圖,四棱錐的高為,底面是邊長為的正方形,頂點在底面上的射影是正方形的中心是棱的中點.試求直線與平面所成角的正弦值.

解析試題分析:由題意知,以為坐標(biāo)原點,軸,軸,軸建立空間坐標(biāo)系,從而得出,進而求出向量,再求出平面的法向量,易求得:,最后可得:
,以為坐標(biāo)原點,軸,軸,軸建立空間坐標(biāo)系,則
所以
設(shè)是平面的一個法向量,易求得
設(shè)與平面所成的角,因為
所以: 
考點:直線與平面的位置關(guān)系,二面角,向量法解立體幾何知識.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知一四棱錐P-ABCD的底面是邊長為1的正方形,且側(cè)棱PC⊥底面ABCD,且PC=2,E是側(cè)棱PC上的動點
(1)求四棱錐P-ABCD的體積;
(2)證明:BD⊥AE。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知正三棱柱ABC-A1B1C1的底面邊長為8,側(cè)棱長為6,D為AC中點。

(1)求證:直線AB1∥平面C1DB;
(2)求異面直線AB1與BC1所成角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖平面SAC⊥平面ACB,ΔSAC是邊長為4的等邊三角形,ΔACB為直角三角形,∠ACB=90,BC=,求二面角S-AB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐中,,底面為梯形,,,且.(10分)

(1)求證:;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,三棱柱ABC-A1B1C1中,點A1在平面ABC內(nèi)的射影D在AC上,∠ACB=90,BC=1,AC=CC1=2.
(1)證明:AC1⊥A1B;
(2)設(shè)直線AA1與平面BCC1B1的距離為,求二面角A1-AB-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在正方體中,,,,,分別是棱,,
,,的中點.求證:
(1)直線∥平面;
(2)直線⊥平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在如圖所示的幾何體中,四邊形ABCD是等腰梯形,AB∥CD,∠DAB= 60°,F(xiàn)C⊥平面ABCD,AE⊥BD,CB=" CD=" CF.
(1)求證:BD⊥平面AED;
(2)求二面角F—BD—C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知兩條不同直線,兩個不同平面、,給出下列命題:
①若垂直于內(nèi)的兩條相交直線,則
②若,則平行于內(nèi)的所有直線;
③若,,則;
④若,,則;
⑤若,則
其中正確命題的序號是           .(把你認(rèn)為正確命題的序號都填上)

查看答案和解析>>

同步練習(xí)冊答案