已知四棱錐中,側(cè)棱都相等,底面是邊長為的正方形,底面中心為,以為直徑的球經(jīng)過側(cè)棱中點,則該球的體積為(   )
A.B.C.D.
C

試題分析:如圖,G為側(cè)棱PB的中點,結(jié)合題意得,所以,又因為,所以,球的半徑為1,其體積為。故選C。

點評:求幾何體的表面積和體積是常考知識點,我們要知道柱體、錐體和球的表面積公式和體積公式。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

是三條不同的直線, 是三個不同的平面,
①若都垂直,則    
②若,,則
③若,則   
④若與平面所成的角相等,則
上述命題中的真命題是__________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=60°,AC=6,AD=5,S△ADC,求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知在正方體,分別是的中點,在棱上,且

(1)求證:; (2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖四棱錐E—ABCD中,底面ABCD是平行四邊形。∠ABC=45°,BE=BC=   EA=EC=6,M為EC中點,平面BCE⊥平面ACE,AE⊥EB

(I)求證:AE⊥BC (II)求四棱錐E—ABCD體積

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在中,,延長,連接,若,且,則________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,三棱錐P-ABC中,PC平面ABC,PC=AC=2,AB=BC,D是PB上一點,且CD平面PAB

(1)求證:AB平面PCB;
(2)求異面直線AP與BC所成角的大小;
(3)求二面角C-PA-B 的大小的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

正方體中,MN分別是棱CD1、CC1的中點,則異面直線MA1DN所成角的余弦值是            .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,中,側(cè)棱與底面垂直,,,點分別為的中點.

(1)證明:;
(2)求二面角的正弦值.

查看答案和解析>>

同步練習冊答案