已知命題“存在x0∈R,2x0≤0”則其否定是                       (   )

A.不存在x0∈R,2x0>0              B.存在x0∈R,2x0≥0

C.對任意的x∈R,2x≤0             D.對任意的x∈R,2x>0

 

【答案】

D

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下面給出的4個命題:
①已知命題p:?x1,x2∈R,
f(x1)-f(x2)
x1-x2
<0
,則?p:?x1,x2∈R,
f(x1)-f(x2)
x1-x2
≥0
;
②函數(shù)f(x)=2-x-sinx在[0,2π]上恰好有2個零點;
③對于定義在區(qū)間[a,b]上的連續(xù)不斷的函數(shù)y=f(x),存在c∈(a,b),使f(c)=0的必要不充分條件是f(a)f(b)<0;
④對于定義在R上的函數(shù)f(x),若實數(shù)x0滿足f(x0)=x0,則稱x0是f(x)的不動點.若f(x)=x2+ax+1不存在不動點,則a的取值范圍是(-1,3).
其中正確命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列四種說法中,錯誤的個數(shù)是( 。
①A={0,1}的子集有3個;
②命題“存在x0∈R, 2x0≤0”的否定是:“不存在x0∈R, 2x0>0
③函數(shù)f(x)=e-x-ex的切線斜率的最大值是-2;
④已知函數(shù)f(x)滿足f(1)=1,且f(x+1)=2f(x),則f(1)+f(2)+…+f(10)=1023.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•焦作一模)下列命題為真命題的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知命題“存在x0∈R,2x0≤0”則其否定是


  1. A.
    不存在x0∈R,2x0>0
  2. B.
    存在x0∈R,2x0≥0
  3. C.
    對任意的x∈R,2x≤0
  4. D.
    對任意的x∈R,2x>0

查看答案和解析>>

同步練習冊答案