【題目】設(shè)函數(shù)f(x)=lg[log ( x﹣1)]的定義域為集合A,集合B={x|x<1,或x≥3}.
(1)求A∪B,(RB)∩A;
(2)若2a∈A,且log2(2a﹣1)∈B,求實數(shù)a的取值范圍.
【答案】
(1)解:函數(shù)f(x)=lg[log ( x﹣1)]的定義域是集合A;
函數(shù)f(x)的定義域滿足. ,
∴ ,
∴2<x<4,
∴集合A=(2,4);
集合B={x|x<1,或x≥3}.即B=(﹣∞,1)∪[3,+∞),
∴RB=[1,3),
故得∴A∪B=(﹣∞,1)∪(2,+∞);
(RB)∩A=(2,3)
(2)解:由(1)得A=(2,4);B=(﹣∞,1)∪[3,+∞),
∵2a∈A,
∴2<2a<4,
解得:1<a<2,
又∵log2(2a﹣1)∈B,
∴l(xiāng)og2(2a﹣1)<1或log2(2a﹣1)≥3,
∴0<2a﹣1<2或2a﹣1≥8,
解得
∴ .
所以實數(shù)a的取值范圍是(1, )
【解析】(1)由題意:求函數(shù)的定義域得到集合A,在根據(jù)集合的基本運算求解A∪B,(RB)∩A;(2)因為2a∈A,log2(2a﹣1)∈B,即A是2a的值域,B是log2(2a﹣1)的值域,即可求解a的范圍.
【考點精析】本題主要考查了元素與集合關(guān)系的判斷和對數(shù)的運算性質(zhì)的相關(guān)知識點,需要掌握對象與集合的關(guān)系是,或者,兩者必居其一;①加法:②減法:③數(shù)乘:④⑤才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓 過點,其左、右焦點分別為,離心率, 是橢圓右準(zhǔn)線上的兩個動點,且.
(1)求橢圓的方程;
(2)求的最小值;
(3)以為直徑的圓是否過定點?請證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=loga(1﹣x)+loga(x+3),(0<a<1).
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的最小值為﹣2,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有甲乙兩個班級進行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如表的列聯(lián)表.
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 100 |
已知在全部100人中抽到隨機抽取1人為優(yōu)秀的概率為
(1)請完成如表的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),有多大的把握認為“成績與班級有關(guān)系“?
(3)按分層抽樣的方法,從優(yōu)秀學(xué)生中抽出6名學(xué)生組成一個樣本,再從樣本中抽出2名學(xué)生,記甲班被抽到的人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.
參考公式和數(shù)據(jù):K2= ,其中n=a+b+c+d
下面的臨界值表供參考:
p(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l過點P(0,﹣4),且傾斜角為 ,圓C的極坐標(biāo)方程為ρ=4cosθ.
(1)求直線l的參數(shù)方程和圓C的直角坐標(biāo)方程;
(2)若直線l和圓C相交于A、B兩點,求|PA||PB|及弦長|AB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義域為R的偶函數(shù),當(dāng)x≥0時,f(x)=x2﹣4x,那么當(dāng)x<0時,f(x)= , 不等式f(x+2)<5的解集是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(, 是自然對數(shù)的底數(shù)).
(1)當(dāng)時,求曲線在點處的切線方程;
(2)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=x2+bx+c(b,c∈R,b<0).
(1)若f(x)的定義域為[0,1]時,值域也是[0,1],求b,c的值;
(2)若b=﹣2時,若函數(shù)g(x)= 對任意x∈[3,5],g(x)>c恒成立,試求實數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某批發(fā)市場對某種商品的日銷售量(單位:噸)進行統(tǒng)計,最近50天的統(tǒng)計結(jié)果如下:
若以上表中頻率作為概率,且每天的銷售量相互獨立.
(1)求5天中該種商品恰好有兩天的日銷售量為1.5噸的概率;
(2)已知每噸該商品的銷售利潤為2千元, 表示該種商品某兩天銷售利潤的和(單位:千元),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com