首項為正數(shù)的數(shù)列{an}滿足a n+1(an2+3),n∈N+.
(1)證明:若a1為奇數(shù),則對一切n≥2,an都是奇數(shù);
(2)若對一切n∈N+都有a n+1>an,求a1的取值范圍.
(1)證明:已知a1是奇數(shù),假設ak=2m﹣1是奇數(shù),其中m為正整數(shù),則由遞推關(guān)系得
a k+1==m(m﹣1)+1是奇數(shù).
根據(jù)數(shù)學歸納法,
對任何n≥2,an都是奇數(shù).
(2)解:由a n+1﹣an=(an﹣1)(an﹣3)知,a n+1>an當且僅當an<1或an>3.
另一方面,若0<ak<1,則0<a k+1=1;
若ak>3,則a k+1=3.
根據(jù)數(shù)學歸納法得,0<a1<10<an<1,n∈N+;
a1>3an>3,n∈N+.
綜上所述,對一切n∈N+都有a n+1>an的充要條件是0<a1<1或a1>3.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

7、一個首項為正數(shù)的等差數(shù)列中,前3項的和等于前11項的和,當這個數(shù)列的前n項和最大時,n等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

4、首項為正數(shù)的等差數(shù)列,前3項的和與前11項的和相等,此數(shù)列前幾項和最大( 。

查看答案和解析>>

科目:高中數(shù)學 來源:江蘇省揚州中學2012屆高三上學期階段測試數(shù)學試題 題型:044

首項為正數(shù)的數(shù)列{an}滿足an+1(a+3),n∈N*

(1)證明:若a1為奇數(shù),則對一切n≥2,an都是奇數(shù);

(2)若對一切n∈N*,都有an+1>an,求a1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個首項為正數(shù)的等差數(shù)列中,前5項的和等于前13項和,當這個數(shù)列前n項和最大時,n等于(    )

A.5                    B.6                    C.9                      D.10

查看答案和解析>>

同步練習冊答案