一盒中裝有9張各寫有一個數(shù)字的卡片,其中4張卡片上的數(shù)字是1,3張卡片上的數(shù)字是2,2張卡片上的數(shù)字是3,從盒中任取3張卡片.
(1)求所取3張卡片上的數(shù)字完全相同的概率;
(2)表示所取3張卡片上的數(shù)字的中位數(shù),求的分布列與數(shù)學(xué)期望.
(注:若三個數(shù)滿足 ,則稱為這三個數(shù)的中位數(shù)).

(1)(2)詳見解析.

解析試題分析:(1)從9張卡片中任取3張,有和不同的結(jié)果,其中,3張卡片上的數(shù)字完全相同的有,由于是任取的,所以每個結(jié)果出現(xiàn)的可能性是相等的,故可根據(jù)古典概型的概率公式求得概率;
(2)由題設(shè)隨機變量的所有可能取值有1,2,3;
表示抽出的三第卡片上的三個數(shù)字可以是
表示抽出的三第卡片上的三個數(shù)字可以是
表示抽出的三第卡片上的三個數(shù)字可以是
于是可用古典概型的概率公式求出的分布列與數(shù)學(xué)期望.
解:(1)由古典概型中的概率計算公式知所求概率為

(2)的所有可能值為1,2,3,且
,.
的分布列為


1
2
3




 
從而
考點:1、組合;2、古典概型;3、離散型隨機變量的分布列與數(shù)學(xué)期望.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了了解青少年視力情況,某市從高考體檢中隨機抽取16名學(xué)生的視力進行調(diào)查,經(jīng)醫(yī)生用對數(shù)視力表檢查得到每個學(xué)生的視力狀況的莖葉圖(以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉)如下:

(1)若視力測試結(jié)果不低丁5.0,則稱為“好視力”,求校醫(yī)從這16人中隨機選取3人,至多有1人是“好視力”的概率;
(2)以這16人的樣本數(shù)據(jù)來估計該市所有參加高考學(xué)生的的總體數(shù)據(jù),若從該市參加高考的學(xué)生中任選3人,記表示抽到“好視力”學(xué)生的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某學(xué)校高一年級組建了A、B、C、D四個不同的“研究性學(xué)習(xí)”小組,要求高一年級學(xué)生必須參加,
且只能參加一個小組的活動.假定某班的甲、乙、丙三名同學(xué)對這四個小組的選擇是等可能的.
(1)求甲、乙、丙三名同學(xué)選擇四個小組的所有選法種數(shù);
(2)求甲、乙、丙三名同學(xué)中至少有二人參加同一組活動的概率;
(3)設(shè)隨機變量X為甲、乙、丙三名同學(xué)參加A小組活動的人數(shù),求X的分布列與數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一紙箱中放有除顏色外,其余完全相同的黑球和白球,其中黑球2個,白球3個.
(1)從中同時摸出兩個球,求兩球顏色恰好相同的概率;
(2)從中摸出一個球,放回后再摸出一個球,求兩球顏色恰好不同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

隨機觀測生產(chǎn)某種零件的某工廠名工人的日加工零件數(shù)(單位:件),獲得數(shù)據(jù)如下:、、、、、、、、、、、、、、、、、、、,根據(jù)上述數(shù)據(jù)得到樣本的頻率分布表如下:

分組
頻數(shù)
頻率















(1)確定樣本頻率分布表中、、的值;
(2)根據(jù)上述頻率分布表,畫出樣本頻率分布直方圖;
(3)根據(jù)樣本頻率分布直方圖,求在該廠任取人,至少有人的日加工零件數(shù)落在區(qū)間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為喜迎馬年新春佳節(jié),某商場在正月初六進行抽獎促銷活動,當(dāng)日在該店消費滿500元的顧客可參加抽獎.抽獎箱中有大小完全相同的4個小球,分別標(biāo)有 “馬”“上”“有”“錢”.顧客從中任意取出1個球,記下上面的字后放回箱中,再從中任取1個球,重復(fù)以上操作,最多取4次,并規(guī)定若取出“錢”字球,則停止取球.獲獎規(guī)則如下:依次取到標(biāo)有“馬”“上”“有”“錢”字的球為一等獎;不分順序取到標(biāo)有“馬”“上”“有”“錢”字的球,為二等獎;取到的4個球中有標(biāo)有“馬”“上”“有”三個字的球為三等獎.
(1)求分別獲得一、二、三等獎的概率;
(2)設(shè)摸球次數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某公司為招聘新員工設(shè)計了一個面試方案:應(yīng)聘者從道備選題中一次性隨機抽取道題,按照題目要求獨立完成.規(guī)定:至少正確完成其中道題的便可通過.已知道備選題中應(yīng)聘者甲有道題能正確完成,道題不能完成;應(yīng)聘者乙每題正確完成的概率都是,且每題正確完成與否互不影響.
(1)分別求甲、乙兩人正確完成面試題數(shù)的分布列,并計算其數(shù)學(xué)期望;
(2)請分析比較甲、乙兩人誰的面試通過的可能性大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

現(xiàn)有4個人去參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇,為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個游戲,擲出點數(shù)為1或2的人去參加甲游戲,擲出點數(shù)大于2的人去參加乙游戲.
(1)求這4個人中恰有2人去參加甲游戲的概率;
(2)求這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;
(3)用X,Y分別表示這4個人中去參加甲、乙游戲的人數(shù),記ξ=|X Y|,求隨機變量ξ的分布列與數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某停車場臨時停車按時段收費,收費標(biāo)準(zhǔn)為:每輛汽車一次停車不超過1小時收費6元,超過1小時的部分每小時收費8元(不足1小時的部分按1小時計算).現(xiàn)有甲、乙二人在該停車場臨時停車,兩人停車都不超過4小時.
(1)若甲停車1小時以上且不超過2小時的概率為,停車付費多于14元的概率為,求甲臨時停車付費恰為6元的概率;
(2)若每人停車的時間在每個時段的可能性相同,求甲、乙二人停車付費之和為36元的概率.

查看答案和解析>>

同步練習(xí)冊答案