【題目】已知銳角三角形ABC中,角A,B,C所對的邊分別為a,b,c若c﹣a=2acosB,則 的取值范圍是

【答案】(
【解析】解:∵c﹣a=2acosB, ∴由正弦定理可得:sinC=2sinAcosB+sinA,
∴sinAcosB+cosAsinB=2sinAcosB+sinA,可得:cosAsinB﹣sinAcosB=sinA,即:sin(B﹣A)=sinA,
∵A,B為銳角,可得:B﹣A=A,可得:B=2A∈(0, ),
∴A∈(0, ),
又∵C=π﹣3A∈(0, ),可得:A∈( ),
∴綜上,可得A∈( ),可得:sinA∈( ),
=sinA∈( , ).
故答案為:( ).
由正弦定理,三角函數(shù)恒等變換的應用化簡可得sin(B﹣A)=sinA,由A,B為銳角,可得B=2A,解得A的范圍,可得求sinA∈( , ),化簡所求即可得解.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列的前項和,對任意,都有為常數(shù))

(1)當時,求;

(2)當時,

(。┣笞C:數(shù)列是等差數(shù)列;

(ⅱ)若對任意,必存在使得,已知,且,

求數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高中社團進行社會實踐,對[25,55]歲的人群隨機抽取n人進行了一次是否開通“微博”的調查,若開通“微博”的稱為“時尚族”,否則稱為“非時尚族”,通過調查分別得到如圖所示統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:
完成以下問題:
(Ⅰ)補全頻率分布直方圖并求na , p的值;
(Ⅱ)從[40,50)歲年齡段的“時尚族”中采用分層抽樣法抽取18人參加網絡時尚達人大賽,其中選取3人作為領隊,記選取的3名領隊中年齡在[40,45)歲的人數(shù)為X,求X的分布列和期望E(X)..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=xe2x﹣lnx﹣ax.
(1)當a=0時,求函數(shù)f(x)在[ ,1]上的最小值;
(2)若x>0,不等式f(x)≥1恒成立,求a的取值范圍;
(3)若x>0,不等式f( )﹣1≥ e + 恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在考試測評中,常用難度曲線圖來檢測題目的質量,一般來說,全卷得分高的學生,在某道題目上的答對率也應較高,如果是某次數(shù)學測試壓軸題的第1、2問得分難度曲線圖,第1、2問滿分均為6分,圖中橫坐標為分數(shù)段,縱坐標為該分數(shù)段的全體考生在第1、2問的平均難度,則下列說法正確的是(
A.此題沒有考生得12分
B.此題第1問比第2問更能區(qū)分學生數(shù)學成績的好與壞
C.分數(shù)在[40,50)的考生此大題的平均得分大約為4.8分
D.全體考生第1問的得分標準差小于第2問的得分標準差

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,內角,,的對邊,,滿足

(1)求的大小;

(2)若,C角最小,求的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,.

(1)若,求使得成立的的集合;

(2)當時,函數(shù)只有一個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在試制某種洗滌劑新產品時,不同添加劑的種類以及添加的順序對產品的性質都有影響,需要對各種不同的搭配方式做實驗進行比較.現(xiàn)有芳香度分別為1,2,3,4,5,6的六種添加劑可供選用,根據(jù)試驗設計原理,需要隨機選取兩種不同的添加劑先后添加進行實驗.

(1)求兩種添加劑芳香度之和等于5的概率;

(2)求兩種添加劑芳香度之和大于5,且后添加的添加劑芳香度較大的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】五點法作函數(shù)的圖象時,所填的部分數(shù)據(jù)如下:

(1)根據(jù)表格提供數(shù)據(jù)求函數(shù)的解析式;

2,求函數(shù)的單調減區(qū)間.

查看答案和解析>>

同步練習冊答案