【題目】已知函數(shù),,.

(1)已知為函數(shù)的公共點(diǎn),且函數(shù)在點(diǎn)處的切線相同,求的值;

(2)若上恒成立,求的取值范圍.

【答案】(1)(2)

【解析】

(1)求出函數(shù)的導(dǎo)數(shù),由函數(shù)fx),gx)在點(diǎn)T處的切線相同,得到,且,從而求出a的值即可;

(2)令,將a與0、e分別比較進(jìn)行分類,討論的單調(diào)性及最值情況,從而找到符合條件的a的值.

(1)由題意,,

∵點(diǎn)為函數(shù)的公共點(diǎn),且函數(shù)在點(diǎn)處的切線相同,

,

由(2)得:,

,∴,從而,∴

代入(1)得:,∴,.

(2)令

,

①當(dāng)時(shí),單調(diào)遞增,

,滿足題意;

②當(dāng)時(shí),

,∴,∴,∴,∴單調(diào)遞增,

解得:,∴

③當(dāng)時(shí),,使

當(dāng)時(shí),單調(diào)遞減;

當(dāng)時(shí),,單調(diào)遞增;

,

,不恒成立,

綜上,實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)為拋物線的焦點(diǎn),拋物線上的點(diǎn)滿足(為坐標(biāo)原點(diǎn)),且.

(1)求拋物線的方程;

(2)若直線與拋物線交于不同的兩點(diǎn),是否存在實(shí)數(shù)及定點(diǎn),對(duì)任意實(shí)數(shù),都有?若存在,求出的值及點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且asin B=-bsin.

(1)求A;

(2)若△ABC的面積S=c2,求sin C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】指出下列命題是全稱量詞命題還是存在量詞命題,并判斷它們的真假.

1xN,2x1是奇數(shù);

2)存在一個(gè)xR,使0;

3)對(duì)任意實(shí)數(shù)a|a|0;

4)有一個(gè)角α,使sinα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最小正周期為,將函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度,再向下平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖像.

(1)求函數(shù)的單調(diào)遞增區(qū)間;

(2)在銳角中,角的對(duì)邊分別為,若,,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=.

1)判斷函數(shù)在區(qū)間(1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論;

2)求該函數(shù)在區(qū)間[24]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知直線與曲線交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最小正周期為,將的圖象向右平移個(gè)單位長(zhǎng)度得到函數(shù)的圖象,有下列叫個(gè)結(jié)論

單調(diào)遞增; 為奇函數(shù);

的圖象關(guān)于直線對(duì)稱; 的值域?yàn)?/span>.

其中正確的結(jié)論是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(Ⅰ)討論的單調(diào)性;

(Ⅱ)當(dāng)時(shí),證明:

(Ⅲ)求證:對(duì)任意正整數(shù),都有 (其中為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

同步練習(xí)冊(cè)答案