【題目】在信息時(shí)代的今天,隨著手機(jī)的發(fā)展,“微信”越來(lái)越成為人們交流的一種方法,某機(jī)構(gòu)對(duì)“使用微信交流”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽取了100人,他們年齡的頻數(shù)分布及對(duì)“使用微信交流”贊成的人數(shù)如下表:(注:年齡單位:歲)

年齡

頻數(shù)

10

30

30

20

5

5

贊成人數(shù)

9

25

24

9

2

1

(1)若以“年齡45歲為分界點(diǎn)”,由以上統(tǒng)計(jì)數(shù)據(jù)完成下面的列聯(lián)表,并通過(guò)計(jì)算判斷是否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為“使用微信交流的態(tài)度與人的年齡有關(guān)”?

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計(jì)

贊成

不贊成

合計(jì)

(2)若從年齡在調(diào)查的人中各隨機(jī)選取1人進(jìn)行追蹤調(diào)查,求選中的2人中贊成“使用微信交流”的人數(shù)恰好為1人的概率.

0.025

0.010

0.005

0.001

3.841

6.635

7.879

10.828

參考公式:,其中.

【答案】(1)見(jiàn)解析;(2)

【解析】

1)通過(guò)年齡的頻數(shù)分布及對(duì)“使用微信交流”贊成的人數(shù)表,可以求出:年齡不低于45歲的人數(shù)中,其中贊成的人數(shù)為9+2+1=12,不贊成的人數(shù)為20+5+5-12=18;同理可算出,年齡低于45歲的人數(shù)中,贊成的人數(shù)與不贊成的人數(shù),然后填表;根據(jù)所給的公式,可以計(jì)算出的值,對(duì)照臨界值表,可以判斷出是否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為“使用微信交流的態(tài)度與人的年齡有關(guān)”.

(2)年齡中有5人,不贊成的記為,,;贊成的記為,,年齡中有5人,不贊成的記為,,贊成記,列出從年齡中各取1人可能情況, 然后查出恰好有1人使用微信交流的可能情況的個(gè)數(shù),最后求出概率.

解:(1)根據(jù)頻數(shù)分布,填寫列聯(lián)表如下:

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計(jì)

贊成

12

58

70

不贊成

18

12

30

合計(jì)

30

70

100

計(jì)算觀測(cè)值,

對(duì)照臨界值表知,在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為“使用微信

交流的態(tài)度與人的年齡有關(guān)”;

(2)年齡中有5人,不贊成的記為,;贊成的記為,年齡中有5人,不贊成的記為,,,贊成記,則從年齡,中各取1人共有25種可能,結(jié)果如下:

,,,,,,,,,,,,,,,,

恰好有1人使用微信交流的共有11種可能,結(jié)果如下:

,,,,,,,

所以從年齡在,調(diào)查的人中各隨機(jī)選取一人進(jìn)行追蹤調(diào)查,選中的2人中贊成“使用微信交流”的人數(shù)恰好為一人的概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)F為拋物線C)的焦點(diǎn),過(guò)點(diǎn)F的動(dòng)直線l與拋物線C交于M,N兩點(diǎn),且當(dāng)直線l的傾斜角為45°時(shí),.

1)求拋物線C的方程.

2)試確定在x軸上是否存在點(diǎn)P,使得直線PM,PN關(guān)于x軸對(duì)稱?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義矩陣的一種運(yùn)算,該運(yùn)算的意義為點(diǎn)在矩陣的變換下成點(diǎn)設(shè)矩陣

已知點(diǎn)在矩陣的變換后得到的點(diǎn)的坐標(biāo)為,試求點(diǎn)的坐標(biāo);

是否存在這樣的直線:它上面的任一點(diǎn)經(jīng)矩陣變換后得到的點(diǎn)仍在該直線上?若存在,試求出所有這樣的直線;若不存在,則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)代城市大多是棋盤式布局(如北京道路幾乎都是東西和南北走向).在這樣的城市中,我們說(shuō)的兩點(diǎn)間的距離往往不是指兩點(diǎn)間的直線距離(位移),而是實(shí)際路程(如圖).在直角坐標(biāo)平面內(nèi),我們定義,兩點(diǎn)間的直角距離為:.

1)在平面直角坐標(biāo)系中,寫出所有滿足到原點(diǎn)的直角距離2格點(diǎn)的坐標(biāo).(格點(diǎn)指橫、縱坐標(biāo)均為整數(shù)的點(diǎn))

2)求到兩定點(diǎn)直角距離和為定值的動(dòng)點(diǎn)軌跡方程,并在直角坐標(biāo)系內(nèi)作出該動(dòng)點(diǎn)的軌跡.(在以下三個(gè)條件中任選一個(gè)做答)

,,;

,;

,,.

3)寫出同時(shí)滿足以下兩個(gè)條件的格點(diǎn)的坐標(biāo),并說(shuō)明理由(格點(diǎn)指橫、縱坐標(biāo)均為整數(shù)的點(diǎn)).

①到,兩點(diǎn)直角距離相等;

②到,兩點(diǎn)直角距離和最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右頂點(diǎn)為,上頂點(diǎn)為,右焦點(diǎn)為.連接并延長(zhǎng)與橢圓相交于點(diǎn),且

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)經(jīng)過(guò)點(diǎn)的直線與橢圓相交于不同的兩點(diǎn),直線分別與直線相交于點(diǎn),點(diǎn).若的面積是的面積的2倍,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)在點(diǎn)點(diǎn)處的切線方程;

(Ⅱ)當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知空間幾何體中,均為邊長(zhǎng)為的等邊三角形,為腰長(zhǎng)為的等腰三角形,平面平面,平面平面.

(1)試在平面內(nèi)作一條直線,使直線上任意一點(diǎn)的連線均與平面平行,并給出詳細(xì)證明;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是圓上任意一點(diǎn),,線段的垂直平分線與半徑交于點(diǎn),當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),記點(diǎn)的軌跡為曲線.

(1)求曲線的方程;

(2)記曲線軸交于兩點(diǎn),是直線上任意一點(diǎn),直線,與曲線的另一個(gè)交點(diǎn)分別為,求證:直線過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,函數(shù)在第一象限內(nèi)的圖像如圖所示,試做如下操作:把x軸上的區(qū)間等分成n個(gè)小區(qū)間,在每一個(gè)小區(qū)間上作一個(gè)小矩形,使矩形的右端點(diǎn)落在函數(shù)的圖像上.若用表示第k個(gè)矩形的面積,表示這n個(gè)叫矩形的面積總和.

1)求的表達(dá)式;

2)利用數(shù)學(xué)歸納法證明,并求出的表達(dá)式

3)求的值,并說(shuō)明的幾何意義.

查看答案和解析>>

同步練習(xí)冊(cè)答案