(在給出的二個(gè)題中,任選一題作答.若多選做,則按所做的第一題給分)
(1)(坐標(biāo)系與參數(shù)方程)在極坐標(biāo)系中,曲線ρcos2θ=2sinθ的焦點(diǎn)的極坐標(biāo)為_(kāi)_____.
(2)(不等式選講)若不等式的解集為{x|m≤x≤n},且|m-n|=2a,則a的取值集合為_(kāi)_____.
【答案】分析:(1)若點(diǎn)P在直角坐標(biāo)系中的坐標(biāo)為(x,y),在極坐標(biāo)系中的坐標(biāo)為(ρ,θ),則有關(guān)系式:.根據(jù)此公式將曲線轉(zhuǎn)化成x2=2y,得到曲線是開(kāi)口向上的拋物線,以F(0,)為焦點(diǎn),再將點(diǎn)F化成極坐標(biāo)即可;
(2)根據(jù)題意,不等式的解集應(yīng)該是曲線y=位于直線y=x上方的部分為符合題意的圖象,觀察其橫坐標(biāo),可得x=n是方程的一個(gè)解,且|m-n|=m+a=2a,建立方程組,解之可得a的取值集合.
解答:解:(1)由ρcos2θ=2sinθ得ρ2cos2θ=2ρsinθ
∵x=ρcosθ,y=ρsinθ
∴曲線的直角坐標(biāo)方程為:x2=2y,是以F(0,)為焦點(diǎn),開(kāi)口向上的拋物線,
再將F化成極坐標(biāo)形式為:
(2)根據(jù)不等式作出如右圖的示意圖,
曲線y=位于直線y=x上方的部分為符合題意的圖象,觀察其橫坐標(biāo)
可得區(qū)間[m,n]即[-a,n],說(shuō)明(n,0)在曲線y=
即:
解之得:n=a=2
故答案為:(),{2}
點(diǎn)評(píng):本題第一小問(wèn)考查了簡(jiǎn)單曲線的極坐標(biāo)方程,以及極坐標(biāo)與直角坐標(biāo)的互化,第二小問(wèn)考查了不等式的解集求法和不等式的基本性質(zhì),都屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(在給出的二個(gè)題中,任選一題作答.若多選做,則按所做的第A題給分)
(A)(坐標(biāo)系與參數(shù)方程)在極坐標(biāo)系中,直線ρsin(θ-
π
4
)=
2
2
與圓ρ=2cosθ
的位置關(guān)系是
相離
相離

(B)(不等式選講)已知對(duì)于任意非零實(shí)數(shù)m,不等式|5m-3|+|3-4m|≥|m|(x-
2
x
)
恒成立,則實(shí)數(shù)x的取值范圍是
(-∞,-1]∪(0,2]
(-∞,-1]∪(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(在給出的二個(gè)題中,任選一題作答.若多選做,則按所做的第一題給分)
(1)(坐標(biāo)系與參數(shù)方程)在極坐標(biāo)系中,曲線ρcos2θ=2sinθ的焦點(diǎn)的極坐標(biāo)為
1
2
π
2
1
2
,
π
2

(2)(不等式選講)若不等式
x+a
≥x(a>0)
的解集為{x|m≤x≤n},且|m-n|=2a,則a的取值集合為
{2}
{2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江西省吉安市高三最后一次模擬考試?yán)砜茢?shù)學(xué) 題型:填空題

(在給出的二個(gè)題中,任選一題作答,若兩題都做,則按所做的A題給分)

(A)在極坐標(biāo)系中,直線與圓的位置關(guān)系是         。

(B)已知對(duì)于任意非零實(shí)數(shù),不等式恒成立,則實(shí)數(shù)的取值范圍是         。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(在給出的二個(gè)題中,任選一題作答.若多選做,則按所做的第一題給分)
(1)(坐標(biāo)系與參數(shù)方程)在極坐標(biāo)系中,曲線ρcos2θ=2sinθ的焦點(diǎn)的極坐標(biāo)為_(kāi)_______.
(2)(不等式選講)若不等式數(shù)學(xué)公式的解集為{x|m≤x≤n},且|m-n|=2a,則a的取值集合為_(kāi)_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案