【題目】已知定義在R上的函數(shù)f(x)是奇函數(shù),且滿足f(3-x)=f(x),f(-1)=3,數(shù)列{an}滿足a1=1且an=n(an+1-an)(n∈N*),則f(a36)+f(a37)=( 。
A. B. C. 2D. 3
【答案】A
【解析】
根據(jù)條件判斷函數(shù)的周期是6,利用數(shù)列的遞推關(guān)系求出數(shù)列的通項公式,結(jié)合數(shù)列的通項公式以及函數(shù)的周期性進(jìn)行轉(zhuǎn)化求解即可.
∵函數(shù)f(x)是奇函數(shù),且滿足f(3-x)=f(x),f(-1)=3,
∴f(x)=f(3-x)=-f(x-3),
即f(x+3)=-f(x),則f(x+6)=-f(x+3)=f(x),
即函數(shù)f(x)是周期為6的周期函數(shù),
由數(shù)列{an}滿足a1=1且an=n(an+1-an)(n∈N*),
則an=nan+1-nan,即(1+n)an=nan+1,則 ,
等式兩邊同時相乘得,
即=n,即an=na1=n,即數(shù)列{an}的通項公式為an=n,
則f(a36)+f(a37)=f(36)+f(37)=f(0)+f(1),
∵f(x)是奇函數(shù),∴f(0)=0,
∵f(-1)=3,∴-f(1)=3,即f(1)=-3,
則f(a36)+f(a37)=f(36)+f(37)=f(0)+f(1)=0-3=-3,
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)?shù)姆椒ū硎鞠铝屑希?/span>
(1)一年中有31天的月份的全體;
(2)大于小于12.8的整數(shù)的全體;
(3)梯形的全體構(gòu)成的集合;
(4)所有能被3整除的數(shù)的集合;
(5)方程的解組成的集合;
(6)不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,且函數(shù)是偶函數(shù).
(1)求的解析式;.
(2)若不等式在上恒成立,求n的取值范圍;
(3)若函數(shù)恰好有三個零點,求k的值及該函數(shù)的零點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點E是正方形ABCD邊AD的中點,現(xiàn)將△ABE沿BE所在直線翻折成到△A'BE,使A’C=BC,并連接A'C,A'D.
(1)求證:DE∥平面A'BC;
(2)求證:A'E⊥平面A'BC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為的菱形中,.點,分別在邊,上,點與點,不重合,,.沿將翻折到的位置,使平面平面.
(1)求證:平面;
(2)當(dāng)與平面所成的角為時,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,若函數(shù)在上的最小值記為,請寫出的函數(shù)表達(dá)式。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com