【題目】已知橢圓C: =1(a>b>0),F(xiàn)(﹣c,0)為其左焦點(diǎn),點(diǎn)P(﹣ ,0),A1 , A2分別為橢圓的左、右頂點(diǎn),且|A1A2|=4,|PA1|= |A1F|.
(1)求橢圓C的方程;
(2)過點(diǎn)A1作兩條射線分別與橢圓交于M、N兩點(diǎn)(均異于點(diǎn)A1),且A1M⊥A1N,證明:直線MN恒過x軸上的一個(gè)定點(diǎn).
【答案】
(1)解:∵|A1A2|=4,∴a=2,
又∵|PA1|= |A1F|,∴ ,
整理得 ,∴c= ,
則b2=a2﹣c2=1.
∴橢圓C的方程為 ;
(2)證明:由已知直線MN與y軸不垂直,假設(shè)其過定點(diǎn)T(n,0),設(shè)其方程為x=my+n,
聯(lián)立 ,得(m2+4)y2+2mny+n2﹣4=0.
設(shè)M(x1,y1),N(x2,y2),則 , .
∴x1+x2=m(y1+y2)+2n, .
∵A1M⊥A1N,∴ .
∴x1x2+2(x1+x2)+4+y1y2=0,
∴ .
即 .
化簡得:(n+2)(5n+6)=0,
若n=﹣2,則T與A重合,不合題意,
∴n+2≠0,
整理得n=﹣ .
綜上,直線MN過定點(diǎn)T( ).
【解析】(1)由已知列出關(guān)于a、c的方程組,求解可得其值,再由隱含條件求出b,進(jìn)而求出橢圓方程。(2)根據(jù)已知直線與y軸不垂直,假設(shè)其過定點(diǎn)T,設(shè)出其所在方程并和橢圓方程聯(lián)立,利用韋達(dá)定理結(jié)合垂直關(guān)系即可求得。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)y=f(x)圖象上不同的兩點(diǎn)M(x1 , y1),N(x2 , y2)處的切線斜率分別是kM , kN , 那么規(guī)定Φ(M,N)= 叫做曲線y=f(x)在點(diǎn)M與點(diǎn)N之間的“彎曲度”.設(shè)曲線f(x)=x3+2上不同兩點(diǎn)M(x1 , y1),N(x2 , y2),且x1x2=1,則該曲線在點(diǎn)M與點(diǎn)N之間的“彎曲度”的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】執(zhí)行如圖所示的程序框圖,若輸出的S的值為64,則判斷框內(nèi)可填入的條件是( )
A.k≤3?
B.k<3?
C.k≤4?
D.k>4?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x2﹣ax+a+3,g(x)=ax﹣2a.
(1)若函數(shù)h(x)=f(x)﹣g(x)在[﹣2,0]上有兩個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍;
(2)若存在x0∈R,使得f(x0)≤0與g(x0)≤0同時(shí)成立,求實(shí)數(shù)a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a2=1,|an+1﹣an|= ,若a2n+1>a2n﹣1 , a2n+2<a2n(n∈N+)則數(shù)列{(﹣1)nan}的前40項(xiàng)的和為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 , ,設(shè) .
(Ⅰ)若f(α)=2,求 的值;
(Ⅱ)在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足(2a﹣b)cosC=ccosB,求f(A)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
A.命題“x∈R,使得x2+x+1<0”的否定是:“x∈R,x2+x+1>0”
B.命題“若x2﹣3x+2=0,則x=1或x=2”的否命題是:“若x2﹣3x+2=0,則x≠1或x≠2”
C.直線l1:2ax+y+1=0,l2:x+2ay+2=0,l1∥l2的充要條件是
D.命題“若x=y,則sinx=siny”的逆否命題是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校舉行“慶元旦”教工羽毛球單循環(huán)比賽(任意兩個(gè)參賽隊(duì)只比賽一場),共有高一、高二、高三三個(gè)隊(duì)參賽,高一勝高二的概率為 ,高一勝高三的概率為 ,高二勝高三的概率為P,每場勝負(fù)獨(dú)立,勝者記1分,負(fù)者記0分,規(guī)定:積分相同者高年級(jí)獲勝.
(Ⅰ)若高三獲得冠軍概率為 ,求P.
(Ⅱ)記高三的得分為X,求X的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖扇形AOB是一個(gè)觀光區(qū)的平面示意圖,其中∠AOB的圓心角為 ,半徑OA為1Km,為了便于游客觀光休閑,擬在觀光區(qū)內(nèi)鋪設(shè)一條從入口A到出口B的觀光道路,道路由圓弧AC、線段CD及線段BD組成.其中D在線段OB上,且CD∥AO,設(shè)∠AOC=θ,
(1)用θ表示CD的長度,并寫出θ的取值范圍.
(2)當(dāng)θ為何值時(shí),觀光道路最長?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com