已知函數(shù)f(x)和g(x)的圖象關于原點對稱,且f(x)=x2+2x.

(1)求函數(shù)g(x)的解析式;

(2)解不等式g(x)≥f(x)-|x-1|;

(3)(文)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函數(shù),求實數(shù)λ的取值范圍.

解析:(1)設函數(shù)y=f(x)的圖象上任一點Q(x0,y0)關于原點的對稱點為P(x,y),??

∵點Q(x0,y0)在函數(shù)y=f(x)的圖象上,?

∴-y=x2-2x,即y=-x2+2x.?

故g(x)=-x2+2x.?

(2)由g(x)≥f(x)-|x-1|可得?

2x2-|x-1|≤0.?

x≥1時,2x2-x+1≤0,此時不等式無解.?

x<1時,2x2+x-1≤0,?

∴-1≤x.?

因此,原不等式的解集為[-1, ].?

(3)(文)h(x)=-(1+λ)x2+2(1-λ)x+1.??

①當λ=-1時,h(x)=4x+1在[-1,1]上是增函數(shù),∴λ=-1.?

②當λ≠-1時,對稱軸的方程為x=.?

(ⅰ)當λ<-1時, ≤-1,?

解得λ<-1.?

(ⅱ)當λ>-1時, ≥1,?

解得-1<λ≤0.?

綜上,λ≤0.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)和g(x)的圖象關于原點對稱,且f(x)=x2+2x,

(1)求函數(shù)g(x)的解析式;

(2)解不等式g(x)≥f(x)-|x-1|;

(3)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函數(shù),求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)和g(x)分別由下表給出定義:

x

1

2

3

f(x)

2

________

3

x

1

2

3

g(x)

3

________

1

若方程f(g(x))=g(f(x))的解恰有2個,請在表中橫線上填上合適的數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江西省高三上學期期中考試文科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)f(x)和g(x)的圖象關于原點對稱,且

(1)求函數(shù)g(x)的解析式;

(2)解不等式;

(3)若在[-1,1]上是增函數(shù),求實數(shù)的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學 來源:新課標高三數(shù)學函數(shù)的圖象奇偶性、周期性專項訓練(河北) 題型:解答題

已知函數(shù)f(x)和g(x)的圖象關于原點對稱,且f(x)=x2+2x.

(1)求函數(shù)g(x)的解析式;

(2)解不等式g(x)≥f(x)-|x-1|;

(3)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函數(shù),求實數(shù)λ的取值范圍

 

查看答案和解析>>

同步練習冊答案