如圖,四棱錐的底面為矩形,,分別是的中點,

(Ⅰ)求證:平面;
(Ⅱ)求證:平面平面
(Ⅰ)詳見解析;(Ⅱ)詳見解析.

試題分析:(Ⅰ)要證線面平行,先找線線平行;(Ⅱ)要證線面垂直,先證線面垂直,于是需找出圖形中的線線垂直關系,以方便于證明面面垂直.
試題解析:(Ⅰ)取中點,連
因為分別為的中點,所以,且.     2分
又因為中點,所以,且.               3分
所以,.故四邊形為平行四邊形.          5分
所以,又平面平面,
平面,.                                               7分
(Ⅱ)設,由中點得,
又因為,,所以,
所以,又為公共角,所以
所以,即.                           10分
,
所以平面.                                             12分
平面,所以平面平面.                    14分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在四棱錐中,底面是正方形,交于點底面,的中點.

(1)求證:平面;
(2)若,在線段上是否存在點,使平面?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,在圓錐PO中, PO=,?O的直徑AB=2, C為弧AB的中點,D為AC的中點.

(1)求證:平面POD^平面PAC;
(2)求二面角B—PA—C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,底面是矩形,底面的中點,已知,,

求:(Ⅰ)三角形的面積;(II)三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在如圖所示的幾何體中,是邊長為2的正三角形. 若平面,平面平面, ,且

(1)求證://平面;
(2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,⊥底面,四邊形是直角梯形,,,.

(Ⅰ)求證:平面⊥平面
(Ⅱ)若二面角的余弦值為,求.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱錐中,,,設頂點A在底面上的射影為R.
(Ⅰ)求證: ;
(Ⅱ)設點在棱上,且,試求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱錐中,平面平面,. 過點,垂足為,點,分別為棱的中點.

求證:(1)平面平面;
(2).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

對于平面、和直線、、、,下列命題中真命題是             (    )
A.若,則
B.若;
C.若,則
D.若,則.

查看答案和解析>>

同步練習冊答案