如圖,已知拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)恰好是橢圓的右焦點(diǎn)F,且兩條曲線(xiàn)的交點(diǎn)的連線(xiàn)過(guò)F,則該橢圓的離心率為( )
A.
B.
C.
D.
【答案】分析:先求出拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)坐標(biāo),再利用兩條曲線(xiàn)的交點(diǎn)的連線(xiàn)過(guò)F,求出其中一個(gè)交點(diǎn)的坐標(biāo),最后利用定義求出2a和2c就可求得橢圓的離心率.
解答:解:因?yàn)閽佄锞(xiàn)y2=2px(p>0)的焦點(diǎn)F為(,0),設(shè)橢圓另一焦點(diǎn)為E.
當(dāng)x=時(shí)代入拋物線(xiàn)方程得y=±p.又因?yàn)镻Q經(jīng)過(guò)焦點(diǎn)F,所以P(,p)且PF⊥OF.
所以|PE|==p,|PF|=P.|EF|=p.
故2a=p+p,2c=p.e==-1.
故選 A.
點(diǎn)評(píng):本題考查橢圓與拋物線(xiàn)的綜合問(wèn)題.在求橢圓的離心率時(shí),一般是求出a和c,也可以先求出b和c或a,b;再利用a,b,c之間的關(guān)系來(lái)求離心率e.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)恰好是橢圓
x2
a2
+
y2
b2
=1
的右焦點(diǎn)F,且兩條曲線(xiàn)的交點(diǎn)的連線(xiàn)過(guò)F,則該橢圓的離心率為( 。
A、
2
-1
B、2(
2
-1)
C、
5
-1
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知拋物線(xiàn)y2=2px(p>0),焦點(diǎn)為F,準(zhǔn)線(xiàn)為直線(xiàn)l,P為拋物線(xiàn)上的一點(diǎn),過(guò)點(diǎn)P作l的垂線(xiàn),垂足為點(diǎn)Q.當(dāng)P的橫坐標(biāo)為3時(shí),△PQF為等邊三角形.
(1)求拋物線(xiàn)的方程;
(2)過(guò)點(diǎn)F的直線(xiàn)交拋物線(xiàn)于A,B兩點(diǎn),交直線(xiàn)l于點(diǎn)M,交y軸于G.
①若
MA
=λ1
AF
,
MB
=λ2
BF
,求證:λ12為常數(shù);
②求
GA
GB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)拋物線(xiàn)焦點(diǎn)垂直于對(duì)稱(chēng)軸的弦叫做拋物線(xiàn)的通徑.如圖,已知拋物線(xiàn)y2=2px(p>0),過(guò)其焦點(diǎn)F的直線(xiàn)交拋物線(xiàn)于A(x1,y1)、B(x2,y2)兩點(diǎn),過(guò)A、B作準(zhǔn)線(xiàn)的垂線(xiàn),垂足分別為A1、B1
(1)求出拋物線(xiàn)的通徑,證明x1x2和y1y2都是定值,并求出這個(gè)定值;
(2)證明:A1F⊥B1F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•西城區(qū)一模)如圖,已知拋物線(xiàn)y2=x及兩點(diǎn)A1(0,y1)和A2(0,y2),其中y1>y2>0.過(guò)A1,A2分別作y軸的垂線(xiàn),交拋物線(xiàn)于B1,B2兩點(diǎn),直線(xiàn)B1B2與y軸交于點(diǎn)A3(0,y3),此時(shí)就稱(chēng)A1,A2確定了A3.依此類(lèi)推,可由A2,A3確定A4,….記An(0,yn),n=1,2,3,….
給出下列三個(gè)結(jié)論:
①數(shù)列{yn}是遞減數(shù)列;
②對(duì)?n∈N*,yn>0;
③若y1=4,y2=3,則y5=
23

其中,所有正確結(jié)論的序號(hào)是
①②③
①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線(xiàn)y2=2px(p>0),過(guò)它的焦點(diǎn)F的直線(xiàn)l與其相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(Ⅰ)若拋物線(xiàn)過(guò)點(diǎn)(1,2),求它的方程;
(Ⅱ)在(1)的條件下,若直線(xiàn)l的斜率為l,求AB弦長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案