【題目】函數(shù)f(x)=x3﹣3x+1在閉區(qū)間[﹣3,0]上的最大值、最小值分別是( )
A.1,﹣1
B.3,﹣17
C.1,﹣17
D.9,﹣19
【答案】B
【解析】解:由f′(x)=3x2﹣3=0,得x=±1, 當x<﹣1時,f′(x)>0,
當﹣1<x<1時,f′(x)<0,
當x>1時,f′(x)>0,
故f(x)的極小值、極大值分別為f(﹣1)=3,f(1)=﹣1,
而f(﹣3)=﹣17,f(0)=1,
故函數(shù)f(x)=x3﹣3x+1在[﹣3,0]上的最大值、最小值分別是3、﹣17.
所以答案是:B
【考點精析】通過靈活運用函數(shù)的最大(小)值與導數(shù),掌握求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=f(x)(x∈R)的圖象如圖所示,f′(x)是f(x)的導函數(shù),則不等式(x﹣1)f′(x)<0的解集為( )
A.(﹣∞, )∪(1,2)
B.(﹣1,1)∪(1,3)
C.(﹣1, )∪(3,+∞)
D.(﹣∞,﹣1)∪(3,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是計算1 的值的程序框圖,則圖中①、②處應填寫的語句分別是( )
A.n=n+2,i>10?
B.n=n+2,i≥10?
C.n=n+1,i>10?
D.n=n+1,i≥10?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設集合A={x|﹣1<x<2},B={x|2a﹣1<x<2a+3}.
(1)若AB,求a的取值范圍;
(2)若A∩B=,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)y=f(x)在[﹣3,3]上是奇函數(shù),且對任意x,y都有f(x+y)=f(x)+f(y),當x>0時,f(x)<0,f(1)=﹣2:
(Ⅰ)求f(2)的值;
(Ⅱ)判斷f(x)的單調性,并證明你的結論;
(Ⅲ)求不等式f(x﹣1)>4的解集.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A(2,2),B(3,4),C(m,0),△ABC的面積為5.
(1)求m的值;
(2)若m>0,∠BAC的平分線交線段BC于D,求點D的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1中,M,N分別為AB,BC的中點.
(1)求證:平面B1MN⊥平面BB1D1D;
(2)當點P在DD1上運動時,是否都有MN∥平面A1C1P,證明你的結論;
(3)若P是D1D的中點,試判斷PB與平面B1MN是否垂直?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com