【題目】某樂園按時段收費,收費標準為:每玩一次不超過小時收費10元,超過小時的部分每小時收費元(不足小時的部分按小時計算).現(xiàn)有甲、乙二人參與但都不超過小時,甲、乙二人在每個時段離場是等可能的。為吸引顧客,每個顧客可以參加一次抽獎活動。
(1) 用表示甲乙玩都不超過小時的付費情況,求甲、乙二人付費之和為44元的概率;
(2)抽獎活動的規(guī)則是:顧客通過操作按鍵使電腦自動產(chǎn)生兩個[0,1]之間的均勻隨機數(shù),并按如右所示的程序框圖執(zhí)行.若電腦顯示“中獎”,則該顧客中獎;若電腦顯示“謝謝”,則不中獎,求顧客中獎的概率.
【答案】(1)(2)
【解析】
試題(1)設甲付費a元,乙付費b元,其中a,b=10,18,26,34,由此利用列舉法能求出“甲、乙二人付費之和為44元”的概率;(2)由已知0≤x≤1,0≤y≤1點(x,y)在正方形OABC內,作出條件的區(qū)域,由此能求出顧客中獎的概率
試題解析:(1)設甲付費元,乙付費元,其中.
則甲、乙二人的費用構成的基本事件空間為:
共16種情形.
其中,這種情形符合題意.
故“甲、乙二人付費之和為元”的概率為
(2)由已知點如圖的正方形內,
由條件
得到的區(qū)域為圖中陰影部分
由,令得;令得;
由條件滿足的區(qū)域面積。
設顧客中獎的事件為,則顧客中獎的概率
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求滿足的的值;
(2)若函數(shù)是定義在R上的奇函數(shù),函數(shù)滿足,若對任意且≠0,不等式恒成立,求實數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖甲所示,是梯形的高,,,,先將梯形沿折起如圖乙所示的四棱錐,使得.
(1)在棱上是否存在一點,使得平面?若存在,請求出的值,若不存在,請說明理由;
(2)點是線段上一動點,當直線與所成的角最小時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)圖象相鄰兩條對稱軸的距離為,將函數(shù)的圖象向左平移個單位后,得到的圖象關于y軸對稱則函數(shù)的圖象( )
A. 關于直線對稱 B. 關于直線對稱
C. 關于點對稱 D. 關于點對稱
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是正方體的平面展開圖,在這個正方體中;
(1)BM與ED平行;(2)CN與BE是異面直線;(3)CN與BM所成角為60°;(4)CN與AF垂直. 以上四個命題中,正確命題的序號是( )
A.(1)(2)(3)B.(2)(4)C.(3)(4)D.(3)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l過直線x﹣y﹣1=0與直線2x+y﹣5=0的交點P.
(1)若l與直線x+3y﹣1=0垂直,求l的方程;
(2)點A(﹣1,3)和點B(3,1)到直線l的距離相等,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一片森林原面積為,計劃從某年開始,每年砍伐一些樹林,且每年砍伐面積與上一年剩余面積的百分比相等.并計劃砍伐到原面積的一半時,所用時間是10年.為保護生態(tài)環(huán)境,森林面積至少要保留原面積的.已知到今年為止,森林剩余面積為原面積的.
(1)求每年砍伐面積與上一年剩余面積的百分比;
(2)到今年為止,該森林已砍伐了多少年?
(3)為保護生態(tài)環(huán)境,今后最多還能砍伐多少年?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正四棱錐S-ABCD中,E,M,N分別是BC,CD,SC的中點,動點P在線段MN上運動時,下列四個結論:①EP⊥AC;②EP∥BD;③EP∥平面SBD;④EP⊥平面SAC,其中恒成立的為( )
A.①③B.③④C.①②D.②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com