【題目】設(shè)函數(shù)f (x)的導(dǎo)函數(shù)為f′(x),對任意x∈R都有f (x)>f′(x)成立,則( )
A.3f (ln2)<2 f (ln3)
B.3 f (ln2)=2 f (ln3)
C.3 f(ln2)>2 f (ln3)
D.3 f (ln2)與2 f (ln3)的大小不確定
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|﹣1<x<2},B={x|2a﹣1<x<2a+3}.
(1)若AB,求a的取值范圍;
(2)若A∩B=,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體ABCD﹣A1B1C1D1中,M,N分別為AB,BC的中點.
(1)求證:平面B1MN⊥平面BB1D1D;
(2)當(dāng)點P在DD1上運動時,是否都有MN∥平面A1C1P,證明你的結(jié)論;
(3)若P是D1D的中點,試判斷PB與平面B1MN是否垂直?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】曲線C:ρ2﹣2ρcosθ﹣8=0 曲線E: (t是參數(shù))
(1)求曲線C的普通方程,并指出它是什么曲線.
(2)當(dāng)k變化時指出曲線K是什么曲線以及它恒過的定點并求曲線E截曲線C所得弦長的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x+ ,g(x)=﹣x﹣ln(﹣x)其中a≠0,
(1)若x=1是函數(shù)f(x)的極值點,求實數(shù)a的值及g(x)的單調(diào)區(qū)間;
(2)若對任意的x1∈[1,2],x2∈[﹣3,﹣2]使得f(x1)≥g(x2)恒成立,且﹣2<a<0,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣2x+2(x∈R).
(1)求f(x)的最小值;
(2)求證:x>0時,ex>x2﹣2x+1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+bx2+cx+d的圖象如圖,則函數(shù)y=lnf′(x)的單調(diào)減區(qū)間為( )
A.[0,3)
B.[﹣2,3]
C.(﹣∞,﹣2)
D.[3,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某媒體對“男女同齡退休”這一公眾關(guān)注的問題進(jìn)行 了民意調(diào)査,右表是在某單位得到的數(shù)據(jù)(人數(shù)):
贊同 | 反對 | 合計 | |
男 | 5 | 6 | 11 |
女 | 11 | 3 | 14 |
合計 | 16 | 9 | 25 |
附表:
P(K2≥K) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
(1 )能否有90%以上的把握認(rèn)為對這一問題的看法與性別有關(guān)?
【答案】解:解:K2= ≈2.932>2.706,
由此可知,有90%的把握認(rèn)為對這一問題的看法與性別有關(guān)
(1)進(jìn)一步調(diào)查:(。⿵馁澩澳信g退休”16人中選出3人進(jìn)行陳述發(fā)言,求事件“男士和女士各至少有1人發(fā)言”的概率; (ⅱ)從反對“男女同齡退休”的9人中選出3人進(jìn)行座談,設(shè)參加調(diào)査的女士人數(shù)為X,求X的分布列和期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com