已知函數f(x)=(x-1)2,g(x)=4(x-1),數列{an}是各項均不為0的等差數列,其前n項和為Sn,點(an+1,S2n-1)在函數f(x)的圖象上;數列{bn}滿足b1=2,bn≠1,且(bn-bn+1)·g(bn)=f(bn)(n∈N+).
(1)求an并證明數列{bn-1}是等比數列;
(2)若數列{cn}滿足cn=,證明:c1+c2+c3+…+cn<3.
見解析
【解析】(1)因為點(an+1,S2n-1)在函數f(x)的圖象上,所以=S2n-1.
令n=1,n=2,得即解得a1=1,d=2(d=-1舍去),則an=2n-1.
由(bn-bn+1)·g(bn)=f(bn),
得4(bn-bn+1)(bn-1)=(bn-1)2.
由題意bn≠1,所以4(bn-bn+1)=bn-1,
即3(bn-1)=4(bn+1-1),所以
所以數列{bn-1}是以1為首項,公比為的等比數列.
(2)由(1),得bn-1=n-1.cn=.
令Tn=c1+c2+c3+…+cn,
則Tn=+++…++,①
Tn=+++…++,②
①-②得,Tn=++++…+-=1+·-=2--=2-.所以Tn=3-.
所以c1+c2+c3+…+cn=3-<3.
科目:高中數學 來源:2014年高考數學(理)二輪復習專題提升訓練訓練17練習卷(解析版) 題型:選擇題
某班的全體學生參加英語測試,成績的頻率分布直方圖如圖,數據的分組依次為:[20,40),[40,60),[60,80),[80,100].若低于60分的人數是15,則該班的學生人數是( ).
A.45 B.50 C.55 D.60
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(理)二輪復習專題提升訓練訓練13練習卷(解析版) 題型:填空題
已知ABCD-A1B1C1D1為正方體,①(++)2=32;②·(-)=0;③向量與向量的夾角是60°;④正方體ABCD-A1B1C1D1的體積為|··|.其中正確命題的序號是________.
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(理)二輪復習專題提升訓練訓練11練習卷(解析版) 題型:解答題
已知四棱錐P?ABCD的底面ABCD是邊長為2的正方形,PD⊥底面ABCD,E,F分別為棱BC,AD的中點.
(1)求證:DE∥平面PFB;
(2)已知二面角P?BF?C的余弦值為,求四棱錐P?ABCD的體積.
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(理)二輪復習專題提升訓練訓練11練習卷(解析版) 題型:選擇題
某四棱臺的三視圖如圖所示,則該四棱臺的體積是( ).
A.4 B. C. D.6
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(理)二輪復習專題提升訓練訓練10練習卷(解析版) 題型:選擇題
已知函數f(x)=cos x(x∈(0,2π))有兩個不同的零點x1,x2,方程f(x)=m有兩個不同的實根x3,x4.若把這四個數按從小到大排列構成等差數列,則實數m的值為( ).
A.- B. C. D.-
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(理)二輪復習專題提升訓練優(yōu)化重組卷5練習卷(解析版) 題型:解答題
如圖,在平面直角坐標系xOy中,橢圓C:=1(a>b>0)的離心率為,以坐標原點為圓心,橢圓C的短半軸長為半徑的圓與直線x-y+2=0相切.
(1)求橢圓C的方程;
(2)已知點P(0,1),Q(0,2),設M,N是橢圓C上關于y軸對稱的不同兩點,直線PM與QN相交于點T.求證:點T在橢圓C上.
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(理)二輪復習專題提升訓練優(yōu)化重組卷4練習卷(解析版) 題型:解答題
如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,AB=AA1=.
(1)證明:A1C⊥平面BB1D1D;
(2)求平面OCB1與平面BB1D1D的夾角θ的大小.
查看答案和解析>>
科目:高中數學 來源:2014年高考數學(理)二輪復習專題提升訓練優(yōu)化重組卷2練習卷(解析版) 題型:選擇題
已知向量a,b滿足|a|=2,|b|=1,且(a+b)⊥,則a與b的夾角為( ).
A. B. C. D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com