分析:由題設(shè)可得 S
n-1S
n+2S
n+1=0,求得S
1,S
2,S
3 的值,猜測S
n =-
,n∈N
+;用數(shù)學(xué)歸納法證明,檢驗(yàn)n=1時(shí),猜想成立;假設(shè)S
K=-
,則當(dāng)n=k+1時(shí),由條件可得,
SK+1+=SK+1-SK-2,解出 S
K+1=-
,故n=k+1時(shí),猜想仍然成立.
解答:解:由題設(shè)得S
n2+2S
n+1-a
nS
n=0,當(dāng)n≥2(n∈N
*)時(shí),a
n=S
n-S
n-1,
代入上式,得S
n-1S
n+2S
n+1=0.(*)
S
1=a
1=-
,
∵S
n+
=a
n-2(n≥2,n∈N),令n=2可得
,S
2+
=a
2-2=S
2-a
1-2,
∴
=
-2,
∴S
2=-
.
同理可求得 S
3=-
,S
4=-
.
猜想S
n =-
,n∈N
+,下邊用數(shù)學(xué)歸納法證明:
①當(dāng)n=1時(shí),S
1=a
1=-
,猜想成立.
②假設(shè)當(dāng)n=k時(shí)猜想成立,即S
K=-
,則當(dāng)n=k+1時(shí),∵S
n+
=a
n-2,∴
SK+1+=ak+1-2,
∴
SK+1+=SK+1-SK-2,∴
=
-2=
,
∴S
K+1=-
,∴當(dāng)n=k+1時(shí),猜想仍然成立.
綜合①②可得,猜想對任意正整數(shù)都成立,即 S
n =-
,n∈N
+成立.
點(diǎn)評:本題考查歸納推理,用數(shù)學(xué)歸納法證明等式,證明當(dāng)n=k+1時(shí),S
n =-
,n∈N
+,是解題的難點(diǎn).