已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍且經(jīng)過點(diǎn)A(2,0),求橢圓的標(biāo)準(zhǔn)方程。

 

【答案】

+y2=1或=1.

【解析】本試題主要是考查了橢圓的性質(zhì)以及根據(jù)性質(zhì)求解橢圓的方程的綜合運(yùn)用。因?yàn)闄E圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍且經(jīng)過點(diǎn)A(2,0),那么設(shè)出橢圓的方程,然后結(jié)合已知中的條件,得到參數(shù)a,b的值,進(jìn)而求解橢圓方程。

解:(1)若橢圓的焦點(diǎn)在x軸上,設(shè)方程為=1(a>b>0),

∵橢圓過點(diǎn)A(2,0),∴=1,a=2,∵2a=2·2b,∴b=1,∴方程為+y2=1.

若橢圓的焦點(diǎn)在y軸上,設(shè)橢圓方程為=1(a>b>0),

∵橢圓過點(diǎn)A(2,0),∴=1,∴b=2,2a=2·2b,∴a=4,∴方程為=1.

綜上所述,橢圓方程為+y2=1或=1.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,則橢圓的離心率等于( 。
A、
1
3
B、
3
3
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,且過點(diǎn)A(2,-6)求橢圓的標(biāo)準(zhǔn)方程和離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的
3
倍,則橢圓的離心率等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的3倍,且以過點(diǎn)M(3,0),求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的
2
倍,則橢圓的離心率等于
2
2
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案