【題目】2017衡陽(yáng)第二次聯(lián)考已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)如果對(duì)于任意的, 恒成立,求實(shí)數(shù)的取值范圍;

(3)設(shè)函數(shù) ,過(guò)點(diǎn)作函數(shù)的圖象的所有切線,令各切點(diǎn)的橫坐標(biāo)按從小到大構(gòu)成數(shù)列,求數(shù)列的所有項(xiàng)之和的值.

【答案】(1)增區(qū)間為;減區(qū)間為.(2)(3)

【解析】試題分析:(1)求單調(diào)區(qū)間則根據(jù)導(dǎo)數(shù)解不等式即可(2) 要使恒成立,只需當(dāng)時(shí), 分析函數(shù)單調(diào)性求出最小值解不等式即可(2) 設(shè)切點(diǎn)坐標(biāo)為,則切線斜率為從而切線方程為 代入M,令, ,這兩個(gè)函數(shù)的圖象均關(guān)于點(diǎn)對(duì)稱,則它們交點(diǎn)的橫坐標(biāo)也關(guān)于對(duì)稱,從而所作的所有切線的切點(diǎn)的橫坐標(biāo)構(gòu)成數(shù)列的項(xiàng)也關(guān)于成對(duì)出現(xiàn)根據(jù)此規(guī)律即可分析得解

試題解析:

的增區(qū)間為;減區(qū)間為.

⑵令

要使恒成立,只需當(dāng)時(shí),

,則對(duì)恒成立

上是增函數(shù),則

①當(dāng)時(shí), 恒成立, 上為增函數(shù)

, 滿足題意;

②當(dāng)時(shí), 上有實(shí)根, 上是增函數(shù)

則當(dāng)時(shí), 不符合題意;

③當(dāng)時(shí), 恒成立, 上為減函數(shù),

不符合題意

,即.

設(shè)切點(diǎn)坐標(biāo)為,則切線斜率為

從而切線方程為

, ,這兩個(gè)函數(shù)的圖象均關(guān)于點(diǎn)對(duì)稱,則它們交點(diǎn)的橫坐標(biāo)也關(guān)于對(duì)稱,從而所作的所有切線的切點(diǎn)的橫坐標(biāo)構(gòu)成數(shù)列的項(xiàng)也關(guān)于成對(duì)出現(xiàn),又在共有1008對(duì),每對(duì)和為.

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】六個(gè)面都是平行四邊形的四棱柱稱為平行六面體.已知在平行四邊形ABCD中(如圖1),有AC2+BD2=2(AB2+AD2),則在平行六面體ABCD﹣A1B1C1D1中(如圖2),AC12+BD12+CA12+DB12等于(
A.2(AB2+AD2+AA12
B.3(AB2+AD2+AA12
C.4(AB2+AD2+AA12
D.4(AB2+AD2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y2=4x的焦點(diǎn)為F,過(guò)點(diǎn)F的直線交拋物線于A,B兩點(diǎn). (Ⅰ)若 ,求直線AB的斜率;
(Ⅱ)設(shè)點(diǎn)M在線段AB上運(yùn)動(dòng),原點(diǎn)O關(guān)于點(diǎn)M的對(duì)稱點(diǎn)為C,求四邊形OACB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2017桂林,百色,梧州,北海,崇左五市聯(lián)合?如圖是2017年第一季度五省情況圖,則下列陳述正確的是(

①2017年第一季度 總量和增速均居同一位的省只有1個(gè);

②與去年同期相比,2017年第一季度五個(gè)省的總量均實(shí)現(xiàn)了增長(zhǎng);

③去年同期的總量前三位是江蘇、山東、浙江;

④2016年同期浙江的總量也是第三位.

A. ①② B. ②③④ C. ②④ D. ①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2017江西師范大學(xué)附屬中學(xué)三模已知函數(shù)是自然對(duì)數(shù)的底數(shù)).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若,當(dāng)時(shí),求函數(shù)的最大值;

(3)若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x+ 的圖象過(guò)點(diǎn)P(1,5).
(1)求實(shí)數(shù)m的值,并證明函數(shù)f(x)是奇函數(shù);
(2)利用單調(diào)性定義證明f(x)在區(qū)間[2,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校研究性學(xué)習(xí)小組對(duì)該校高三學(xué)生視力情況進(jìn)行調(diào)查,在高三的全體名學(xué)生中隨機(jī)抽取了名學(xué)生的體檢表,并得到如圖的頻率分布直方圖.

年級(jí)名次

是否近視

近視

不近視

(1)若直方圖中后四組的頻數(shù)成等差數(shù)列,試估計(jì)全 年級(jí)視力在以下的人數(shù);

(2)學(xué)習(xí)小組成員發(fā)現(xiàn),學(xué)習(xí)成績(jī)突出的學(xué)生,近視的比較多,為了研究學(xué)生的視力與學(xué)習(xí)成績(jī)是否有關(guān)系,對(duì)年級(jí)名次在名和名的學(xué)生進(jìn)行了調(diào)查,得到右表中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)的概率不超過(guò)的前提下認(rèn)為視力與學(xué)習(xí)成績(jī)有關(guān)系?

7.879

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=﹣4x2+4ax﹣4a﹣a2在區(qū)間[0,1]內(nèi)有一最大值﹣5,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(Ⅰ)證明: ,直線都不是曲線的切線;

(Ⅱ)若,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案