已知直線l:y=ax+1-a(a∈R).若存在實數(shù)a使得一條曲線與直線l有兩個不同的交點,且以這兩個交點為端點的線段長度恰好等于|a|,則稱此曲線為直線l的“絕對曲線”.下面給出四條曲線方程:①y="-2" |x-1|;②y=;③(x-1)2+(y-1)2=1;④x2+3y2=4;則其中直線l的“絕對曲線”有

A.①④             B.②③             C.②④             D.②③④

 

【答案】

D

【解析】

試題分析:根據(jù)題意,由于直線l:y=ax+1-a(a∈R).若存在實數(shù)a使得一條曲線與直線l有兩個不同的交點,且以這兩個交點為端點的線段長度恰好等于|a|,則稱此曲線為直線l的“絕對曲線”,那么對于選項①y="-2" |x-1|;與l:y=ax+1-a聯(lián)立方程組,由于解方程可知不滿足題意,由于②y=與l:y=ax+1-a聯(lián)立方程組可知弦長為|a|成立。;同理對于③(x-1)2+(y-1)2=1;④x2+3y2=4;分別加以驗證可知,那么能滿足題意的曲線有②③④,故選D.

考點:直線與圓錐曲線的交點

點評:主要是考查了直線與圓錐曲線的 位置關系的運用,屬于中檔題。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)設a>0,如圖,已知直線l:y=ax及曲線C:y=x2,C上的點Q1的橫坐標為a1(0<a1<a).從C上的點Qn(n≥1)作直線平行于x軸,交直線l于點Pn+1,再從點Pn+1作直線平行于y軸,交曲線C于點Qn+1.Qn(n=1,2,3,…)的橫坐標構成數(shù)列{an}.
(Ⅰ)試求an+1與an的關系,并求{an}的通項公式;
(Ⅱ)當a=1,a1
1
2
時,證明
n
k=1
(ak-ak+1)ak+2
1
32

(Ⅲ)當a=1時,證明
n
k-1
(ak-ak+1)ak+2
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:y=ax+b,其中實數(shù)a,b∈{-1,1,2}.
(Ⅰ)求可構成的不同的直線l的條數(shù);
(Ⅱ)求直線l:y=ax+b與圓x2+y2=1沒有公共點的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:y=ax+1-a(a∈R).若存在實數(shù)a使得一條曲線與直線l有兩個不同的交點,且以這兩個交點為端點的線段長度恰好等于|a|,則稱此曲線為直線l的“絕對曲線”.下面給出四條曲線方程:①y=-2|x-1|;②y=x2;③(x-1)2+(y-1)2=1;④x2+3y2=4;則其中直線l的“絕對曲線”有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:y=ax+1與雙曲線C:3x2-y2=1相交于A、B兩點.
(1)求實數(shù)a的取值范圍;
(2)當實數(shù)a取何值時,以線段AB為直徑的圓經(jīng)過坐標原點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:y=ax+1-a(a∈R),若存在實數(shù)a使得一條曲線與直線l有兩個不同的交點,且以這兩個交點為端點的線段的長度恰好等于|a|,則稱此曲線為直線l的“絕對曲線”.下面給出的三條曲線方程:
①y=-2|x-1|;
②(x-1)2+(y-1)2=1;
③x2+3y2=4.
其中直線l的“絕對曲線”有
 
.(填寫全部正確選項的序號)

查看答案和解析>>

同步練習冊答案