(本小題滿分12分)已知的反函數(shù)為.
(1)若,求的取值范圍D;
(2)設(shè)函數(shù),當(dāng)時,求函數(shù)的值域.
解:(1)∵,∴ (x>-1)
≤g(x) ∴,解得0≤x≤1 ∴D=[0,1]
(2)H(x)=g(x)-
∵0≤x≤1 ∴1≤3-≤2
∴0≤H(x)≤ ∴H(x)的值域?yàn)椋?,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若1<x<3,a為何值時,x2—5x+3+a=0有兩解、一解、無解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823190513588265.gif" style="vertical-align:middle;" />(為實(shí)數(shù)).
(1)當(dāng)時,求函數(shù)的值域;
(2)若函數(shù)在定義域上是減函數(shù),求的取值范圍;
(3)函數(shù)上的最大值及最小值,并求出函數(shù)取最值時的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(13分)已知函數(shù)f(x)=ax+(x≠0,常數(shù)a∈R).
(1)討論函數(shù)f(x)的奇偶性,并說明理由;
(2)若函數(shù)f(x)在x∈[3,+∞)上為增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)的定義域?yàn)镈,若對于任意x1,x2∈D,當(dāng)x1<x2時都有f(x1)≤f(x2),
則稱函數(shù)f(x)在D上為非減函數(shù),設(shè)f(x)在[0,1]上為非減函數(shù),且滿足以下條件:(1)
f(0)=0;(2)f()=f(x);(3)f(1-x)=1-f(x),則f()+f()=(   )
A.B.C.1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

,則______  。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知集合,,f:A→B是從A到B的一個映射,若f:x→2x-1,則B中的元素3的原象為                          (   )
A.-1   B.1   C.2 D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列說法正確的為          .
①集合A= ,B={},若BA,則-3a3;
②函數(shù)與直線x=l的交點(diǎn)個數(shù)為0或l;
③函數(shù)y=f(2-x)與函數(shù)y=f(x-2)的圖象關(guān)于直線x=2對稱;
,+∞)時,函數(shù)的值域?yàn)镽;
⑤與函數(shù)關(guān)于點(diǎn)(1,-1)對稱的函數(shù)為(2 -x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù)f(x)的定義域?yàn)镽,若存在常數(shù)M>0,使得|f(x)|≤M|x|對一切實(shí)數(shù)x均成立,則稱f(x)為F函數(shù),給出下列函數(shù):
①f(x)=0;    ②f(x)=x2;    ③f(x)=(sinx+cosx);   ④f(x)=;
⑤f(x)是定義在R上的奇函數(shù),且對于任意實(shí)數(shù)x1,x2,均有|f(x1)-f(x2)|≤2|x1-x2|。
則其中是F函數(shù)的序號是___________________

查看答案和解析>>

同步練習(xí)冊答案