已知橢圓C:的離心率為,右焦點(diǎn)到直線 的距離為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線 與橢圓C交于A、B兩點(diǎn),且線段AB中點(diǎn)恰好在直線上,求△OAB的面積S的最大值.(其中O為坐標(biāo)原點(diǎn)).
(I) .(II)
解析試題分析:(I)由題意得,,所以,所求橢圓方程為.
(II)設(shè),把直線代入橢圓方程得到
,因此,,
所以中點(diǎn),又在直線上,得,
, 故,,
所以,原點(diǎn)到的距離為,
得到,當(dāng)且僅當(dāng)取到等號,檢驗(yàn)成立.
考點(diǎn):本題主要考查橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系,均值定理的應(yīng)用。
點(diǎn)評:中檔題,求橢圓的標(biāo)準(zhǔn)方程,主要運(yùn)用了橢圓的幾何性質(zhì),注意明確焦點(diǎn)軸和a,b,c的關(guān)系。曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。本題(2)利用弦長公式,確定得到三角形面積表達(dá)式,應(yīng)用均值定理求得最大值。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓的離心率為,兩焦點(diǎn)分別為,點(diǎn)M是橢圓C上一點(diǎn),的周長為16,設(shè)線段MO(O為坐標(biāo)原點(diǎn))與圓交于點(diǎn)N,且線段MN長度的最小值為.
(1)求橢圓C以及圓O的方程;
(2)當(dāng)點(diǎn)在橢圓C上運(yùn)動時(shí),判斷直線與圓O的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上.若橢圓上的點(diǎn)到焦點(diǎn)、的距離之和等于4.
(1)寫出橢圓的方程和焦點(diǎn)坐標(biāo).
(2)過點(diǎn)的直線與橢圓交于兩點(diǎn)、,當(dāng)的面積取得最大值時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
平面內(nèi)與兩定點(diǎn)連線的斜率之積等于非零常數(shù)的點(diǎn)的軌跡,加上 兩點(diǎn),所成的曲線可以是圓,橢圓或雙曲線.
(Ⅰ)求曲線的方程,并討論的形狀與值的關(guān)系;
(Ⅱ)當(dāng)時(shí),對應(yīng)的曲線為;對給定的,對應(yīng)的曲線為,若曲線的斜率為的切線與曲線相交于兩點(diǎn),且(為坐標(biāo)原點(diǎn)),求曲線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
曲線都是以原點(diǎn)O為對稱中心、坐標(biāo)軸為對稱軸、離心率相等的橢圓.點(diǎn)M的坐標(biāo)是(0,1),線段MN是曲線的短軸,并且是曲線的長軸 . 直線與曲線交于A,D兩點(diǎn)(A在D的左側(cè)),與曲線交于B,C兩點(diǎn)(B在C的左側(cè)).
(1)當(dāng)=,時(shí),求橢圓的方程;
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的上頂點(diǎn)為,左焦點(diǎn)為,直線與圓相切.過點(diǎn)的直線與橢圓交于兩點(diǎn).
(I)求橢圓的方程;
(II)當(dāng)的面積達(dá)到最大時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點(diǎn)的直線與橢圓相交于兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足(其中為坐標(biāo)原點(diǎn)),求整數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的左、右焦點(diǎn)分別為,
上頂點(diǎn)為,在軸負(fù)半軸上有一點(diǎn),滿足,且.
(Ⅰ)求橢圓的離心率;
(Ⅱ)是過三點(diǎn)的圓上的點(diǎn),到直線的最大距離等于橢圓長軸的長,求橢圓的方程;
(Ⅲ)在(Ⅱ)的條件下,過右焦點(diǎn)作斜率為的直線與橢圓交于兩點(diǎn),線段的中垂線與軸相交于點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,直線過點(diǎn),,且與橢圓相切于點(diǎn).(Ⅰ)求橢圓的方程;(Ⅱ)是否存在過點(diǎn)的直線與橢圓相交于不同的兩點(diǎn)、,使得?若存在,試求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com