一款擊鼓小游戲的規(guī)則如下:每盤游戲都需要擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20分,出現(xiàn)三次音樂獲得100分,沒有出現(xiàn)音樂則扣除200分(即獲得分).設(shè)每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓出現(xiàn)音樂相互獨立.
(1)設(shè)每盤游戲獲得的分數(shù)為,求的分布列;
(2)玩三盤游戲,至少有一盤出現(xiàn)音樂的概率是多少?
(3)玩過這款游戲的許多人都發(fā)現(xiàn),若干盤游戲后,與最初的分數(shù)相比,分數(shù)沒有增加反而減少了.請運用概率統(tǒng)計的相關(guān)知識分析分數(shù)減少的原因.
(1);(2)
(3)每盤所得分數(shù)的期望為負數(shù),所以玩得越多,所得分數(shù)越少.

試題分析:(1)本題屬于獨立重復(fù)試驗問題,利用即可求得的分布列;(2)玩一盤游戲,沒有出現(xiàn)音樂的概率為.“玩三盤游戲,至少有一盤出現(xiàn)音樂”的對立事件是“玩三盤游戲,三盤都沒有出現(xiàn)音樂”由此可得“玩三盤游戲,至少有一盤出現(xiàn)音樂”的概率;(3)
試題解答:(1).所以的分布列為
X
-200
10
20
100
 





(2)玩一盤游戲,沒有出現(xiàn)音樂的概率為,玩三盤游戲,至少有一盤出現(xiàn)音樂的概率為.
(3)由(1)得:,即每盤所得分數(shù)的期望為負數(shù),所以玩得越多,所得分數(shù)越少的可能性更大.
【考點定位】1、隨機變量的分布列;2、獨立重復(fù)事件的概率;3、統(tǒng)計知識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙兩人參加一次考試,已知在備選的10道試題中,甲能答對其中6題,乙能答對其中8題.若規(guī)定每次考試分別都從這10題中隨機抽出3題進行測試,至少答對2題算合格.
(1)分別求甲、乙兩人考試合格的概率;
(2)求甲、乙兩人至少有一人合格的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

俊、杰兄弟倆分別在P、Q兩籃球隊效力,P隊、Q隊分別有14和15名球員,且每個隊員在各自隊中被安排首發(fā)上場的機會是均等的,則P、Q兩隊交戰(zhàn)時,俊、杰兄弟倆同為首發(fā)上場交戰(zhàn)的概率是(首發(fā)上場各隊五名隊員)(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

每次試驗的成功率為p(0<p<1),重復(fù)進行10次試驗,其中前7次都未成功,后3次都成功的概率為____________ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

甲、乙兩人將參加某項測試,他們能達標的概率都是0.8,設(shè)隨機變量為兩人中能達標的人數(shù),則的數(shù)學(xué)期望        .   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)隨機變量X服從二項分布,即X~B(n,p),且E(X)=3,p=,則n=________,V(X)=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某大廈的一部電梯從底層出發(fā)后只能在第18,19,20層可以?浚粼撾娞菰诘讓虞d有5位乘客,且每位乘客在這三層的每一層下電梯的概率均為,用X表示這5位乘客在第20層下電梯的人數(shù),求隨機變量X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙、丙3人投籃,投進的概率分別是,  ,  .(Ⅰ)現(xiàn)3人各投籃1次,求3人都沒有投進的概率;(Ⅱ)用ξ表示乙投籃3次的進球數(shù),求隨機變量ξ的概率分布及數(shù)學(xué)期望Eξ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一只骰子擲次,至少出現(xiàn)一次1點的概率大于,則的最小值為(   )
A.6B.5C.4D.3

查看答案和解析>>

同步練習(xí)冊答案