已知函數(shù)
(I)若,是否存在a,bR,y=f(x)為偶函數(shù).如果存在.請舉例并證明你的結論,如果不存在,請說明理由;
〔II)若a=2,b=1.求函數(shù)在R上的單調區(qū)間;
(III )對于給定的實數(shù)成立.求a的取值范圍.
(I) 存在使為偶函數(shù)〔II)的增區(qū)間為,減區(qū)間為。(III ) 時,;當時,
【解析】(Ⅰ)存在使為偶函數(shù),………………(2分)
證明如下:此時:,
,為偶函數(shù)。………………(4分)
(注:也可以)
(Ⅱ)=,………………(5分)
①當時,
在上為增函數(shù)!6分)
②當時,
則,令得到,
(ⅰ)當時,在上為減函數(shù)。
(ⅱ) 當時,在上為增函數(shù)!8分)
綜上所述:的增區(qū)間為,減區(qū)間為!9分)
(Ⅲ),
,成立。
即:…………………………………………………(10分)
①當時,為增函數(shù)或常數(shù)函數(shù),當時
恒成立。
綜上所述:……………………………………………(12分)
②當時,在[0,1]上為減函數(shù),
恒成立。
綜上所述:……………………………………………(13分)
由①②得當時,;
當時,.……………………………………………(14分)
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)七十二第十章第九節(jié)練習卷(解析版) 題型:填空題
一個籃球運動員投籃一次得3分的概率為a,得2分的概率為b,不得分的概率為c,a,b,c∈(0,1),且無其他得分情況,已知他投籃一次得分的數(shù)學期望為1,則ab的最大值為 .
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學全程總復習課時提升作業(yè)七十七選修4-4第一節(jié)練習卷(解析版) 題型:解答題
將下列各極坐標方程化為直角坐標方程.
(1)θ=(ρ∈R). (2)ρcos2=1.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高中數(shù)學全國各省市理科導數(shù)精選22道大題練習卷(解析版) 題型:解答題
已知函數(shù),,其中.
(Ⅰ)求的極值;
(Ⅱ)若存在區(qū)間,使和在區(qū)間上具有相同的單調性,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高中數(shù)學全國各省市理科導數(shù)精選22道大題練習卷(解析版) 題型:解答題
已知函數(shù),其中.
(Ⅰ)當時,求曲線在點處的切線方程;
(Ⅱ)求f(x)的單調區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高中數(shù)學全國各省市理科導數(shù)精選22道大題練習卷(解析版) 題型:解答題
已知二次函數(shù),關于x的不等式的解集為,其中m為非零常數(shù).設.
(1)求a的值;
(2)如何取值時,函數(shù)存在極值點,并求出極值點;
(3)若m=1,且x>0,求證:
查看答案和解析>>
科目:高中數(shù)學 來源:2014年廣東省廣州市畢業(yè)班綜合測試一理科數(shù)學試卷(解析版) 題型:解答題
已知等差數(shù)列的首項為,公差為,等比數(shù)列的首項為,公比為,.
(1)求數(shù)列與的通項公式;
(2)設第個正方形的邊長為,求前個正方形的面積之和.
(注:表示與的最小值.)
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年(安徽專用)高考數(shù)學(文)仿真模擬卷2練習卷(解析版) 題型:解答題
已知f(x)=x2-2x-ln(x+1)2.
(1)求f(x)的單調遞增區(qū)間;
(2)若函數(shù)F(x)=f(x)-x2+3x+a在上只有一個零點,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com