【題目】設(shè)函數(shù)f(x)=lnx﹣ ax2﹣2x,其中a≤0.
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=2x+b,求a﹣2b的值;
(2)討論函數(shù)f(x)的單調(diào)性;
(3)設(shè)函數(shù)g(x)=x2﹣3x+3,如果對(duì)于任意的x,t∈(0,1],都有f(x)≤g(t)恒成立,求實(shí)數(shù)a的取值范圍.

【答案】
(1)解:函數(shù)f(x)的定義域是(0,+∞),

f′(x)= ﹣ax﹣2,f′(1)=﹣1﹣a=2,解得:a=﹣3,

∴f(1)=﹣ a﹣2=﹣

將(1,﹣ )代入y=2x+b,得:b=﹣ ,

∴a﹣2b=﹣3+5=2;


(2)解:∵f′(x)= ﹣ax﹣2= ,

設(shè)φ(x)=﹣ax2﹣2x+1(x>0,a≤0),

①當(dāng)a=0時(shí),φ(x)=﹣2x+1,

令φ′(x)>0,解得:0<x< ,令φ′(x)<0,解得:x> ,

∴f(x)在(0, )遞增,在( ,+∞)遞減;

②當(dāng)a<0時(shí),φ(x)對(duì)稱軸為x=﹣ >0,過點(diǎn)(0,1)開口向上,

i)若a≤﹣1,f′(x)≥0,則f(x)在(0,+∞)上是增函數(shù).

ii)若﹣1<a<0,當(dāng)x∈(0, )時(shí),f′(x)≥0;當(dāng)x∈( )時(shí),f′(x)≤0;

當(dāng)x∈( ,+∞)時(shí),f'(x)≥0;

∴f(x)在(0, )上是增函數(shù),在( )上是減函數(shù),在( ,+∞)上是增函數(shù).


(3)解:若任意的x,t∈(0,1],都有f(x)≤g(t)恒成立,

則只需f(x)max≤g(t)min,

函數(shù)g(x)=x2﹣3x+3在(0,1]的最小值是g(1)=1,

由(2)得:a=0時(shí),f(x)=lnx﹣2x在(0, )遞增,在( ,1]遞減,

∴f(x)max=f( )=﹣1﹣ln2<1,成立,

﹣1<a<0時(shí), ≥1,∴f(x)在(0,1]遞增,

f(x)max=f(1)=﹣ a﹣2≤1,解得:a≥﹣6,

a≤﹣1時(shí),f(x)在(0,1]上是增函數(shù),

f(x)max=f(1)=﹣ a﹣2≤1,解得:a≥﹣6,

綜上,a∈[﹣6,0].


【解析】(1)求出f(x)的導(dǎo)數(shù),得到f′(1)=2,解得a的值,將a的值代入求出f(1),將(1,f(1))代入方程y=2x+b求出b的值,從而求出a﹣2b的值即可;(2)二次函數(shù)根的討論問題,分a>0,a<0情況進(jìn)行討論.;(3)問題轉(zhuǎn)化為f(x)max≤g(t)min , 分別求出其最大值和最小值即可得到關(guān)于a的不等式,解出即可.
【考點(diǎn)精析】利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性對(duì)題目進(jìn)行判斷即可得到答案,需要熟知一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2aln x(aR).

(1)f(x)x=2處取得極值,求a的值;

(2)f(x)的單調(diào)區(qū)間;

(3)求證:當(dāng)x>1時(shí), x2+ln x<x3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司的生產(chǎn)部門調(diào)研發(fā)現(xiàn),該公司第二、三季度的月用電量與月份線性相關(guān),且數(shù)據(jù)統(tǒng)計(jì)如下表:

但核對(duì)電費(fèi)報(bào)表時(shí)發(fā)現(xiàn)一組數(shù)據(jù)統(tǒng)計(jì)有誤.

(1)請(qǐng)指出哪組數(shù)據(jù)有誤,并說明理由;

(2)在排除有誤數(shù)據(jù)后,求月用電量與月份之間的回歸方程,并預(yù)測(cè)統(tǒng)計(jì)有誤月份的用電量.(結(jié)果精確到0.1)

附注:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,設(shè)當(dāng)箭頭a指向①處時(shí),輸出的S的值為m,當(dāng)箭頭a指向②處時(shí),輸出的S的值為n,則m+n=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且a,b,c成等比數(shù)列,sinB=
(1)求 + 的值;
(2)若 =12,求a+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題P:R上定義運(yùn)算x y=(1-x)y.不等式x1-a)x<1對(duì)任意實(shí)數(shù)x恒成立;命題Q:若不等式≥2對(duì)任意的x∈ N*恒成立.P∧ Q為假命題,P∨ Q為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,雙曲線 =1(a,b>0)的兩頂點(diǎn)為A1 , A2 , 虛軸兩端點(diǎn)為B1 , B2 , 兩焦點(diǎn)為F1 , F2 . 若以A1A2為直徑的圓內(nèi)切于菱形F1B1F2B2 , 切點(diǎn)分別為A,B,C,D.則: (Ⅰ)雙曲線的離心率e=;
(Ⅱ)菱形F1B1F2B2的面積S1與矩形ABCD的面積S2的比值 =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,PA平面ABC,AB⊥AC,PA=AC=3,AB=,BE=EC,AD=2DC.

(1)證明:DE⊥平面PAE;

(2)求二面角A-PE-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,若AB邊上的高為 ,且a2+b2=2 ab,則C=( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案