已知定義域在R上的函數(shù)f(x),對(duì)任意的x,y∈R均有:f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0.

(1)求f(0)的值;

(2)判斷f(x)的奇偶性.

答案:
解析:

  解:(1)令,則有

  因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/0941/0016/135b5dd074fc6538a387e7990ed30dc9/C/Image34.gif" width=60 HEIGHT=22>,

  所以. 4分

  (2)令,則有,由,

  所以,

  即有:,

  所以是偶函數(shù). 12分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a、b∈R,向量
e1
=(x,1),
e2
=(-1,b-x),函數(shù)f(x)=a-
1
e1
e2
是偶函數(shù).
(1)求b的值;
(2)若在函數(shù)定義域內(nèi)總存在區(qū)間[m,n](m<n),使得y=f(x)在區(qū)間[m,n]上的函數(shù)值組成的集合也是[m,n],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

24、已知下表為定義域?yàn)镽的函數(shù)f(x)=ax3+cx+d若干自變量取值及其對(duì)應(yīng)函數(shù)值,為便于研究,相關(guān)函數(shù)值非整數(shù)值時(shí),取值精確到0.01.
x 3.27 1.57 -0.61 -0.59 0.26 0.42 -0.35 -0.56 0 4.25
y -101.63 -10.04 0.07 0.03 0.21 0.20 -0.22 -0.03 0 -226.05
根據(jù)表中數(shù)據(jù)解答下列問(wèn)題:
(1)函數(shù)y=f(x)在區(qū)間[0.55,0.6]上是否存在零點(diǎn),寫(xiě)出判斷并說(shuō)明理由;
(2)證明:函數(shù)y=f(x)在區(qū)間(-∞,-0.35]單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知a、b∈R,向量數(shù)學(xué)公式=(x,1),數(shù)學(xué)公式=(-1,b-x),函數(shù)f(x)=a-數(shù)學(xué)公式是偶函數(shù).
(1)求b的值;
(2)若在函數(shù)定義域內(nèi)總存在區(qū)間[m,n](m<n),使得y=f(x)在區(qū)間[m,n]上的函數(shù)值組成的集合也是[m,n],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008年11月北京市北大附中高中高一(上)課改數(shù)學(xué)模塊水平監(jiān)測(cè)(必修1)(解析版) 題型:解答題

已知下表為定義域?yàn)镽的函數(shù)f(x)=ax3+cx+d若干自變量取值及其對(duì)應(yīng)函數(shù)值,為便于研究,相關(guān)函數(shù)值非整數(shù)值時(shí),取值精確到0.01.
x3.271.57-0.61-0.590.260.42-0.35-0.564.25
y-101.63-10.040.070.030.210.20-0.22-0.03-226.05
根據(jù)表中數(shù)據(jù)解答下列問(wèn)題:
(1)函數(shù)y=f(x)在區(qū)間[0.55,0.6]上是否存在零點(diǎn),寫(xiě)出判斷并說(shuō)明理由;
(2)證明:函數(shù)y=f(x)在區(qū)間(-∞,-0.35]單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年上海市黃浦區(qū)高考數(shù)學(xué)一模試卷(文理合卷)(解析版) 題型:解答題

已知a、b∈R,向量=(x,1),=(-1,b-x),函數(shù)f(x)=a-是偶函數(shù).
(1)求b的值;
(2)若在函數(shù)定義域內(nèi)總存在區(qū)間[m,n](m<n),使得y=f(x)在區(qū)間[m,n]上的函數(shù)值組成的集合也是[m,n],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案