已知a、b、c是互不相等的非零實(shí)數(shù).若用反證法證明三個(gè)方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一個(gè)方程有兩個(gè)相異實(shí)根,應(yīng)假設(shè)成(   )
A.三個(gè)方程都沒(méi)有兩個(gè)相異實(shí)根B.一個(gè)方程沒(méi)有兩個(gè)相異實(shí)根
C.至多兩個(gè)方程沒(méi)有兩個(gè)相異實(shí)根D.三個(gè)方程不都沒(méi)有兩個(gè)相異實(shí)根
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

△ABC三邊長(zhǎng)的倒數(shù)成等差數(shù)列,求證:角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

觀察以下等式:

可以推測(cè)                      (用含有的式子表示,其中為自然數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某學(xué)生在觀察正整數(shù)的前n項(xiàng)平方和公式即12+22+32+…+n2=
n(n+1)(2n+1)
6
,n∈N*時(shí)發(fā)現(xiàn)它的和為關(guān)于n的三次函數(shù),于是他猜想:是否存在常數(shù)a,b,1•22+2•32+…+n(n+1)2=
n(n+1)(n+2)(an+b)
12
.對(duì)于一切n∈N*都立?
(1)若n=1,2時(shí)猜想成立,求實(shí)數(shù)a,b的值.
(2)若該同學(xué)的猜想成立,請(qǐng)你用數(shù)學(xué)歸納法證明.若不成立,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

某同學(xué)準(zhǔn)備用反證法證明如下一個(gè)問(wèn)題:函數(shù)上有意義,且,如果對(duì)于不同的,都有,求證:。那么他的反設(shè)應(yīng)該是___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

用反證法證明:“”,應(yīng)假設(shè)為_(kāi)____________ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知為正整數(shù),用數(shù)學(xué)歸納法證明時(shí),若已假設(shè)為偶數(shù))真,則還需利用歸納假設(shè)再證(   )
A、時(shí)等式也成立   B、時(shí)等式也成立 
C、時(shí)等式也成立   D、時(shí)等式也成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

用反證法證明某命題時(shí),對(duì)結(jié)論:“自然數(shù)都是偶數(shù)”,正確的反設(shè)為(***)
A.都是奇數(shù)B.中至多有一個(gè)是奇數(shù)
C.中至少有一個(gè)是奇數(shù)D.中恰有一個(gè)是奇數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案